版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳市榕城区揭阳三中2023-2024学年高一数学第一学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.2.若,则下列不等式中,正确的是()A. B.C. D.3.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]4.在轴上的截距分别是,4的直线方程是A. B.C. D.5.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.6.函数y=log2的定义域A.(,3) B.(,+∞)C.(,3) D.[,3]7.把11化为二进制数为A. B.C. D.8.某几何体的正视图和侧视图均为如图1所示,则在图2的四个图中可以作为该几何体的俯视图的是A.(1),(3) B.(1),(4)C.(2),(4) D.(1),(2),(3),(4)9.已知函数,则函数的零点个数是A.1 B.2C.3 D.410.已知集合,,则集合()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知幂函数的图象经过点,则___________.12.已知幂函数y=xα的图象过点(4,),则α=__________.13.已知为锐角,,,则__________14.已知为奇函数,,则____________15.幂函数的图象过点,则___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知正方体,(1)证明:平面;(2)求异面直线与所成的角17.已知,且函数是奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明.18.已知函数的定义域为,若存在实数,使得对于任意都存在满足,则称函数为“自均值函数”,其中称为的“自均值数”.(1)判断函数是否为“自均值函数”,并说明理由:(2)若函数,为“自均值函数”,求的取值范围;(3)若函数,有且仅有1个“自均值数”,求实数的值.19.已知为上的奇函数,为上的偶函数,且满足,其中为自然对数的底数.(1)求函数和的解析式;(2)若不等式在恒成立,求实数的取值范围.20.如图,某公园摩天轮的半径为40,圆心O距地面的高度为50,摩天轮做匀速转动,每3转一圈,摩天轮上的点P的起始位置在距地面最近处.(1)已知在时点P距离地面的高度为,求时,点P距离地面的高度;(2)当离地面以上时,可以看到公园的全貌,求转一圈中在点P处有多少时间可以看到公园的全貌.21.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.2、C【解析】利用不等式的基本性质判断.【详解】由,得,即,故A错误;则,则,即,故B错误;则,,所以,故C正确;则,所以,故D错误;故选:C3、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.4、B【解析】根据直线方程的截距式写出直线方程即可【详解】根据直线方程的截距式写出直线方程,化简得,故选B.【点睛】本题考查直线的截距式方程,属于基础题5、D【解析】根据直线的斜率与倾斜角的关系即可求解.【详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.6、A【解析】由真数大于0,求解对分式不等式得答案;【详解】函数y=log2的定义域需满足故选A.【点睛】】本题考查函数的定义域及其求法,考查分式不等式的解法,是中档题7、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故选A.8、A【解析】可以是一个正方体上面一个球,也可以是一个圆柱上面一个球9、A【解析】设,则函数等价为,由,转化为,利用数形结合或者分段函数进行求解,即可得到答案【详解】由题意,如图所示,设,则函数等价为,由,得,若,则,即,不满足条件若,则,则,满足条件,当时,令,解得(舍去);当时,令,解得,即是函数的零点,所以函数的零点个数只有1个,故选A【点睛】本题主要考查了函数零点问题的应用,其中解答中利用换元法结合分段函数的表达式以及数形结合是解决本题的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.10、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】根据题意得到,求出的值,进而代入数据即可求出结果.【详解】由题意可知,即,所以,即,所以,因此,故答案为:.12、【解析】把点的坐标代入幂函数解析式中即可求出.【详解】解:由幂函数的图象过点,所以,解得.故答案为:.13、【解析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【详解】,都是锐角,,又,,,,则故答案为:.14、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.15、【解析】将点的坐标代入解析式可解得结果.【详解】因为幂函数的图象过点,所以,解得.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析;(2)【解析】(1)证明,再根据线面平行的判定定理即可证明结论;(2)即为异面直线与所成的角,求出即可【详解】(1)证:在正方体中,,且,∴四边形为平行四边形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即为异面直线与所成的角,设正方体的边长为,则易得,∴为等边三角形,∴,故异面直线与所成的角为【点睛】本题主要考查线面平行的判定与异面直线所成的角,属于基础题17、(1)(2)在上是减函数,证明见解析【解析】(1)直接由解出,再把代入检验;(2)直接由定义判断单调性即可.【小问1详解】因为,函数奇函数,所以,解得.此时,,,满足题意.故.【小问2详解】在上是减函数.任取,,则,由∴,故在上是减函数.18、(1)不是,理由见解析;(2);(3)或.【解析】(1)假定函数是“自均值函数”,由函数的值域与函数的值域关系判断作答.(2)根据给定定义可得函数在上的值域包含函数在上的值域,由此推理计算作答.(3)根据给定定义可得函数在上的值域包含函数在上的值域,再借助a值的唯一性即可推理计算作答.【小问1详解】假定函数是“自均值函数”,显然定义域为R,则存在,对于,存在,有,即,依题意,函数在R上的值域应包含函数在R上的值域,而当时,值域是,当时,的值域是R,显然不包含R,所以函数不“自均值函数”.【小问2详解】依题意,存在,对于,存在,有,即,当时,的值域是,因此在的值域包含,当时,而,则,若,则,,此时值域的区间长度不超过,而区间长度为1,不符合题意,于是得,,要在的值域包含,则在的最小值小于等于0,又时,递减,且,从而有,解得,此时,取,的值域是包含于在的值域,所以的取值范围是.【小问3详解】依题意,存在,对于,存在,有,即,当时,的值域是,因此在的值域包含,并且有唯一的a值,当时,在单调递增,在的值域是,由得,解得,此时a的值不唯一,不符合要求,当时,函数的对称轴为,当,即时,在单调递增,在的值域是,由得,解得,要a的值唯一,当且仅当,即,则,当,即时,,,,,由且得:,此时a的值不唯一,不符合要求,由且得,,要a的值唯一,当且仅当,解得,此时;综上得:或,所以函数,有且仅有1个“自均值数”,实数的值是或.【点睛】结论点睛:若,,有,则的值域是值域的子集.19、(1),;(2).【解析】(1)解方程组即得解;(2)等价于不等式在恒成立,再利用基本不等式求解.【小问1详解】解:由,得,因为为上的奇函数,为上的偶函数,所以,由,解得,.【小问2详解】解:因为为上的奇函数,所以转化为,因为在上都为增函数,所以在上为增函数,所以在恒成立,即在恒成立,所以在恒成立,因为,当且仅当,即时取等号.所以,所以实数的取值范围为.20、(1)70;(2)0.5.【解析】(1)根据题意,确定的表达式,代入运算即可;(2)要求,即,解不等式即可.【详解】(1)依题意,,,,由得,所以.因为,所以,又,所以.所以,所以.即时点P距离地面的高度为70m.(2)由(1)知.令,即,从而,∴.∵,∴转一圈中在点P处有0.5min的时间可以看到公园的全貌.【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学校医院工作总结
- 2024年高考政治专题复习中华文化提升练习题含解析
- 城市更新旅游合同管理办法
- 物流货物仓储合同文本
- 木质健身器材制作合同
- 市场营销助理招聘合同
- 幼儿园儿童博物馆租赁合同
- 教育培训展示租赁合同
- 计算机硬件生产项目施工合同模板
- 设备租赁合同:艺术展览
- 全面推进依法行政课件
- 船体强度与结构设计,课程设计
- 无限极制度(新人)讲解版课件
- MSD潮湿敏感器件防护培训课件
- 十分钟EE从入门到精通2.0
- 六年级英语上册课件-Unit4 I have a pen pal 人教pep (共23张PPT)
- 赏识教育培训课程课件
- 山西恒泰佳源生物科技有限公司新建年产15万吨乙酸钠项目环评报告书
- 工程开工令模板
- 船用柴油机的发展与分类课件
- 国开成本会计第9章综合练习试题及答案
评论
0/150
提交评论