昌都市2024届数学高一上期末监测试题含解析_第1页
昌都市2024届数学高一上期末监测试题含解析_第2页
昌都市2024届数学高一上期末监测试题含解析_第3页
昌都市2024届数学高一上期末监测试题含解析_第4页
昌都市2024届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

昌都市2024届数学高一上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B.C. D.2.如图所示,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,点Р的坐标为()A. B.C D.3.下列函数中既是奇函数又在定义域上是单调递增函数的是()A. B.C. D.4.函数的一条对称轴是()A. B.C. D.5.函数与的图象可能是()A. B.C. D.6.命题“且”是命题“”的()条件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要7.函数(且)的图像恒过定点()A. B.C. D.8.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.9.函数的零点所在区间为:()A. B.C. D.10.设角的终边经过点,那么A. B.C. D.11.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.12.已知实数,满足,,则的最大值为()A. B.1C. D.2二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设,则________.14.若函数在单调递增,则实数的取值范围为________15.幂函数f(x)的图象过点(4,2),则f(x)的解析式是______16.已知,,,,则______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设函数为常数,且的部分图象如图所示.(1)求函数的表达式;(2)求函数的单调减区间;(3)若,求的值.18.如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为45°,求直线CD与平面PCE所成角的正弦值19.如图,在四边形中,,,,且.(Ⅰ)用表示;(Ⅱ)点在线段上,且,求的值.20.证明:函数是奇函数.21.已知函数(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.22.已知(1)画出这个函数的图象(2)当0<a<2时f(a)>f(2),利用函数图象求出a的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由题意,设,则,又由,求得,得t值,确定函数的解析式,据此分析可得,即,又由,利用换底公式,求得,结合对数的运算性质分析可得答案【详解】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选A【点睛】本题主要考查了函数的单调性的应用,以及对数的运算性质的应用,其中解答中根据题意,设,求得实数的值,确定出函数的解析式,再利用对数的运算性质求解是解答的关键,着重考查了分析问题和解答问题的能力,以及换元思想的应用,属于中档试题2、D【解析】如图,根据题意可得,利用三角函数的定义和诱导公式求出,进而得出结果.【详解】如图,由题意知,,因为圆的半径,所以,所以,所以,即点.故选:D3、D【解析】结合初等函数的奇偶性和单调性可排除选项;再根据奇偶性定义和复合函数单调性的判断方法可证得正确.【详解】对A,∵是奇函数,在(一∞,0)和(0,+∞)上是单调递增函数,在定义域上不是递增函数,可知A错误;对B,不是奇函数,可知B错误;对C,不是单调递增函数,可知C错误;对D,,则为奇函数;当时,单调递增,由复合函数单调性可知在上单调递增,根据奇函数对称性,可知在上单调递增,则D正确.故选:D4、B【解析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确.【详解】由余弦函数性质,有,即,∴当时,有.故选:B5、D【解析】注意到两函数图象与x轴的交点,由排除法可得.【详解】令,得或,则函数过原点,排除A;令,得,故函数,都过点,排除BC.故选:D6、A【解析】将化为,求出x、y值,根据充要条件的定义即可得出结果.【详解】由,可得,解得x=1且y=2,所以“x=1且y=2”是“”的充要条件.故选:A.7、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.8、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理9、C【解析】利用函数的单调性及零点存在定理即得.【详解】因为,所以函数单调递减,,∴函数的零点所在区间为.故选:C.10、D【解析】由题意首先求得的值,然后利用诱导公式求解的值即可.【详解】由三角函数的定义可知:,则.本题选择D选项.【点睛】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.11、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响12、C【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:214、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:15、【解析】根据幂函数的概念设f(x)=xα,将点的坐标代入即可求得α值,从而求得函数解析式【详解】设f(x)=xα,∵幂函数y=f(x)的图象过点(4,2),∴4α=2∴α=这个函数解析式为故答案为【点睛】本题主要考查了待定系数法求幂函数解析式、指数方程解法等知识,属于基础题16、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)(3)【解析】(1)由图可以得到,,故,而的图像过,故而,结合得到.(2)利用复合函数的单调性来求所给函数的单调减区间,可令,解得函数的减区间为.(3)由得,而,所以.解析:(1)根据图象得,又,所以.又过点,所以,又,所以得:.(2)由得:.即函数的单调减区间为.(3)由,得,所以..18、(1)见解析(2)2【解析】1连接BD,交AC于点O,设PC中点为F,连接OF,EF,先证出BD∥EF,再证出EF⊥平面PAC,,结合面面垂直的判定定理即可证平面PAC⊥平面PCE;2先证明∠PCA=45°,设CD的中点为M,连接AM,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2解析:(1)证明:连接BD,交AC于点O,设PC中点为F,连接OF,EF∵O,F分别为AC,PC的中点,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四边形OFED为平行四边形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE⊂平面PCE,∴平面PAC⊥平面PCE(2)因为直线PC与平面ABCD所成角为45°,所以∠PCA=45°,所以AC=PA=2,所以AC=AB,故ΔABC为等边三角形,设CD的中点为M,连接AM,则AM⊥CD,设点D到平面PCE的距离为h1,点P到平面CDE的距离为h则由VD-PCE=V因为ED⊥面ABCD,AM⊂面ABCD,所以ED⊥AM,又AM⊥CD,CD∩DE=D,∴AM⊥面CDE;因为PA//DE,PA⊄平面CDE,DE⊂面CDE,所以PA//面CDE,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2因为PE=EC=5,PC=22,所以又SΔCDE=1,代入(*)得6⋅设CD与平面PCE所成角的正弦值为2419、(Ⅰ)(Ⅱ)【解析】Ⅰ直接利用向量的线性运算即可Ⅱ以O为坐标原点,OA所在的直线为x轴,建立如图所示的平面直角坐标系可得代入各值即可【详解】(Ⅰ)因为,所以.因为,所以(Ⅱ)因,所以.因为,所以点共线.因为,所以.以为坐标原点,所在的直线为轴,建立如图所示的平面直角坐标系.因为,,,所以.所以,.因为点在线段上,且,所以所以.因为,所以.【点睛】本题考查了向量的线性运算,向量夹角的计算,属于中档题20、证明见解析【解析】由奇偶性的定义证明即可得出结果.【详解】中,,即,的定义域为,关于原点对称,,,函数是奇函数.21、(1)答案见解析(2)答案见解析【解析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域【详解】图象如图所示(2)定义域为或或,增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论