版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西南大学附中高一数学第一学期期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.12.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④3.=()A. B.C. D.4.已知幂函数f(x)=xa的图象经过点(2,),则函数f(x)为()A.奇函数且在上单调递增 B.偶函数且在上单调递减C.非奇非偶函数且在上单调递增 D.非奇非偶函数且在上单调递减5.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.6.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④7.某几何体的三视图如图所示,则该几何体的体积为()A.16 B.15C.18 D.178.函数,的最小值是()A. B.C. D.9.某几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.10.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数二、填空题:本大题共6小题,每小题5分,共30分。11.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.12.11分制乒乓球比赛,每赢一球得1分,当某局打成后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成后,甲先发球,乙以获胜的概率为______.13.已知函数是定义在上的奇函数,若时,,则时,__________14.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.15.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________16.______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系xOy中,角θ的终边与单位圆交于点P.(1)若点P的横坐标为-35,求cos(2)若将OP绕点O逆时针旋转π4,得到角α(即α=θ+π4),若tanα=18.如图,在四棱锥中,平面,,为棱上一点.(1)设为与的交点,若,求证:平面;(2)若,求证:19.已知函数的定义域为,且对一切,,都有,当时,总有.(1)求的值;(2)证明:是定义域上的减函数;(3)若,解不等式.20.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.21.已知二次函数.(1)若在的最大值为5,求的值;(2)当时,若对任意实数,总存在,使得.求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B2、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.3、B【解析】利用诱导公式和特殊角的三角函数值直接计算作答.【详解】.故选:B4、C【解析】根据已知求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增【详解】∵幂函数f(x)=xa的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增故选C【点睛】本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题5、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质6、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.7、B【解析】由三视图还原的几何体如图所示,结合长方体的体积公式计算即可.【详解】由图可知,该几何体是在一个长方体的右上角挖去一个小长方体,如图,故该几何体的体积为故选:B8、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.9、C【解析】根据三视图,作出几何体的直观图,根据题中条件,逐一求解各个面的表面积,综合即可得答案.【详解】根据三视图,作出几何体的直观图,如图所示:由题意得矩形的面积,矩形的面积,矩形的面积,正方形、的面积,五边形的面积,所以该几何体的表面积为,故选:C10、C【解析】根据奇偶性的定义判断即可;【详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.12、15【解析】依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,根据相互独立事件概率公式计算可得;【详解】解:依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,其中发球方分别是甲、乙、甲、乙;所以乙以获胜的概率故答案为:13、【解析】函数是定义在上的奇函数,当时,当时,则,,故答案为.14、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.15、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用16、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)15(2)【解析】(1)由三角函数的定义知,cosθ=-35,sin(2)利用公式tanα-β=【详解】(1)∵P在单位圆上,且点P的横坐标为-35,则cosθ=-∴cos(2)由题知α=θ+π4,则θ=α-π【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.18、(1)见解析;(2)见解析.【解析】(1)只需证得,即可证得平面;(2)因为平面,平面,所以,即可证得平面,从而得证.试题解析:(1)在与中,因为,所以,又因为,所以在中,有,则.又因为平面,平面,所以平面.(2)因为平面,平面,所以.又因为,平面,平面,,所以平面,平面,所以19、(1);(2)证明见解析;(3).【解析】(1)令即可求得结果;(2)设,由即可证得结论;(3)将所求不等式化为,结合单调性和定义域的要求即可构造不等式组求得结果.【小问1详解】令,则,解得:;【小问2详解】设,则,,,,是定义域上的减函数;【小问3详解】由得:,即,又,,是定义域上的减函数,,解得:;又,,的解集为.【点睛】思路点睛:本题考查抽象函数的函数值的求解、单调性证明以及利用单调性求解函数不等式的问题;求解函数不等式的基本思路是将所求不等式化为同一函数的两个函数值之间的比较问题,进而通过函数的单调性得到自变量的大小关系.20、(1)或;(2)【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.21、(1)2;(2).【解析】(1)时,;当时,根据单调性可得答案;(2)依题意得,当、时,利用的单调性可得答案;当和时,结合图象和单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度钢筋原材料采购合同5篇
- 人教版九年级化学第八单元复习课件
- 2024年度政府采购服装类协议3篇
- 公司员工半年工作总结
- 2024年度定龙水库水上乐园设备采购合同2篇
- 护理文件首页书写规范
- 小讲课糖尿病护理
- 灾难现场医疗救援
- 菏泽学院《国产影视鉴赏》2022-2023学年第一学期期末试卷
- 《夜视技术及其应用》课件
- 2023南方国家电网招聘笔试参考题库(共500题)答案详解版
- 2023-2024学年广东省深圳市育才二中九年级(上)期中物理试卷
- 2023秋季学期国开电大本科《管理英语3》在线形考(单元自测1至8)试题及答案
- 中建盘扣式落地卸料平台施工方案
- 浅议中国特色社会主义经济建设
- 贫血的中医治疗:中药在贫血治疗中的应用
- 狮子王-中英文-剧本台词(全)
- 印刷品价目表
- 世界旅游业智慧树知到课后章节答案2023年下临沂大学
- (完整版)医疗器械网络交易服务第三方平台质量管理文件
- 电力变压器试验报告模板
评论
0/150
提交评论