版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StationaryBatteryEnergyStorage
Systems
AnalysisAfocusonintradayshiftingMarch2023ContentsPreface33Commercialisationconsiderations10AnoteontheanalysisAnalysis1313171921Technical
comparisonCommercialcomparisonEnvironmentalcomparisonSafetycomparisonSummary4Recommendations4Definitions567ContextConclusionandrecommendationsAppendix222325ExamplesofBESSprojectsandinstallationsTechnologies
andmanufacturersLithiumionbatteries888999ReferencesRedox
flowbatteries(RFB)MoltensaltbatteriesOthermetalbatteriesNon-metalbatteriesPrefaceAnoteontheanalysisThepurposeofthisdocumentistoprovideatechnicalandcommercialcomparisonofvariousbatteryenergystoragesystem(BESS)chemistrieswhicharecurrentlyavailableonthemarketsuitableforintradayshifting.TheanalysispresentedinthisdocumentwasconductedinternallybyAraAke
inQ42022,andassuch,onlyshowsasnapshotoftheBESSmarketintime.DuetothesignificantgrowthandinnovationoccurringintheBESSmarket,dependinguponwhenthisdocumentispickedupbythereader,
theresultsthroughoutregardingthechemistriespresentedmaybeoutofdate.WhensuchaBESSiscombinedwithanintermittentrenewableenergysystemwithnoinherentstorage(wind,solar,
run-of-the-riverhydro),throughouttheday,theresultinghybridsystemcandivertanyexcess
energyproducedattimesoflowdemandtostorage.TheBESScansubsequentlysupplythegridattimesofhighdemand,whilstalsominimisingtheuseoffossilfuelswhenattemptingtomatchpeakdemandandovercomenetworkconstraints.3SummaryRenewableenergyisNewZealand’slargestsourceofelectricitygeneration(82%)•
Nickel-hydrogenisdesignedforuptothreecharge/dischargecyclesperday,
yetisalsocapableofdischargeratesvaryingbetween2and12hours.Competitorshavesimilarcharge/dischargerates,butareonlydesignedforamaximumofonetotwocyclesperdaybeforesignificantlyimpactingbatterylifetime.andprovidesapproximately41%ofNewZealand’sprimaryenergysupply.
Of1theinstalledrenewableelectricitycapacity,
20%isassociatedwithintermittentrenewableenergysystems(IRES)withlittletonocapacityforenergystorage.2•
Fromacostperspective,nickel-hydrogenisthebestvaluefor12hoursorlessofstoragewhencomparingthelevelisedcostofstorage(LCOS)ofthetechnologies,ameasureofthetotalcostofanenergystoragesystemagainsttheenergydischargedoverthebattery’slifetime.ThereispotentialtoovercomethisissuebycombiningIRESwithstationaryenergystoragesystems(i.e.batteries).Withthiskindofhybridsystem,throughintradayshifting,anyexcess
energyproducedbytheplantattimesoflowdemandmaybestoredtosubsequentlysupplythegridattimesofhighdemand,whilstalsominimisingtheuseoffossilfuelswhenattemptingtomatchpeakdemandandovercomenetworkconstraints.•
Theestimatedenvironmentalimpactofthebatteryiscomparabletoanumberofcompetitors,butsignificantlylowerthanlithiumion.AraAke
hasidentifiedanumberofpotentialIRESpowerplantswithinNewZealandtodemonstratesuchahybridsystem.Lithiumiontechnologydominatesthebattery•
Thenickel-hydrogentechnologyhaspassedallrelevantbatterysafetystandards,includingtheUL9540Atestforthermalrunaway.Manynewbatterytechnologieshavepassedthistest,however,
fewlithiumionmanufacturershavewithonlyasinglecontainerisedlithiumionbatterymanufacturerintheUL9540Adatabase(EVLO).marketacrossmostsectors,
includingrenewableenergystorage,butitisofinterestto3AraAke
tounderstandthetechnicalandcommercialcharacteristicsofallthevariousbatterysolutionsavailableonthemarket,aswellasthesafetyandenvironmentalimpactsofthesetechnologies.•
Themanufacturer,EnerVenue,
hasbeenbackedbymultibilliondollarengineeringcompany,Schlumberger(marketedasSLB),whowillsupportlarge-scaledeploymentofnickel-hydrogenbatterytechnologyacrossselectedglobalmarkets.Currentproductionvolumeis60MWh/year,howeverplannedfacilitiessoontobeunderconstructionwillresultinexceeding2GWh/yearbytheendof2024.RecommendationsOfthemorethan10containerisedBESSstudied,nickel-hydrogen(NiH
)isastandout2Anotherbatterytechnologywhichcouldbeofinterestiscalcium-antimony(CaSb),givenitshighenergyoutputandlowLCOS
similartonickel-hydrogen.Noenvironmentaldataforthistechnologywasavailable,butallthingsconsidered,itcouldbeaninterestingtechnologyforsimilarapplications.chemistryforstorageof12hoursorlesswhenconsideringallaspectsduetoauseablelifetimeof30yearsand30,000charge/dischargecycles.•
Onafootprintbasis,nickel-hydrogeniscompetitiveintermsofuseableannualenergyoutputwithhigherenergydensitylithiumionandmoltensaltbatterychemistries.Onalifetimebasis,nickel-hydrogenhasamongthehighestenergyoutputofalltechnologiesstudied,beatingallmanufacturers,buttwolithiumionofferings(CATL
andTesla).4DefinitionsElectricalcurrent(A)Rated
poweroutput(kW)C-rating(hours-1)Theflow(andamount)ofelectricityinanelectricalcircuit,measuredinamperes.1
A
isequaltoanelectricalflowrateof6.241509074×10¹⁸electronspersecond.Thetheoreticalmaximumamountofinstantaneouspower,
measuredinkilowatts,whichcanflowintooroutofabattery.Thecharge/dischargerateisameasureofhowmuchtimeisrequiredtofullychargeordischargeabattery.NotethattheC-ratingofabatteryimpactspoweroutpute.g.a120kWhbatterywithaC/2ratingwillprovide60kWofpowerover2hours.AC/12equivalentwouldprovide10kWover12hours.Electricalresistance(Ω)Rated
batterycapacityorenergyoutput(kWh)Theoppositiontoflowofelectricalcurrentinacircuit,measuredinOhms.Atheoreticalmeasureofbatterypowerdeliveredoveragiventimeperiodi.e.1kWh
isequivalentto1kW
ofconstantpowerovertheperiodof1hour.
1kWh
isalsoequivalentto3.6megajoules(MJ).BatterycycleVoltage
(V)Theprocessofchargingabatteryanddischargingitasrequired.Asinglechargeanddischargeisequivalentto1cycle.Theelectromotivedrivingforceinanelectricalcircuit,measuredinVolts.
Voltageistheproductofcurrentandresistance.Round
tripefficiency(%)Thepercentageofenergyusedtochargethebattery(i.e.putintostorage)whichcanthenbelaterretrieved.Thisisessentiallyameasureoftheenergylostduringagivencharge-dischargecycle.Lifetimedegradation(%/lifetime)Electricalpower(W)Aprocesswhichpermanentlyreducestheamountofenergyabatterycanstore,ortheamountofpoweritcandeliver.
Usuallypresentedonapercycleorperyearbasis.Therateelectricalenergyistransferredbyanelectricalcircuit,measuredinwatts.Poweristheproductofvoltageandcurrent.Useablebatterycapacity(kWh)Theactualbatterypowerdeliveredoveragiventimeperiod,onceaccountingforroundtripefficiency.Batterylifetime(yearsorcycles)BatteryBatterylifetimeisequivalenttothenumberofcyclesbeforethebatterywilleithernolongerholdchargeorperformanceissignificantlyreduced.Thislifetimemayalsobeconvertedtoyears.Adevicecontaininganelectriccelloraseriesofelectriccellsstoringenergythatcanbeconvertedintoelectricalpower.5ContextRenewableenergyisNewZealand’slargestsourceofelectricitygeneration(82%)andprovidesapproximately41%ofNewZealand’sprimaryenergysupply.1Ofthe7682MWofrenewableelectricitycapacityinstalledinNewZealandbytheendof2021,1703MWaregeneratedbyintermittentrenewableenergysystems(IRES).Suchsystemsinclude:2•
Run-of-theriverhydropower(586MW),
whereelectricityisgeneratedfromwater3flowinginariverorstream(asopposedtoconventionalhydrowhichgeneratespowerfromthegravitationalpotentialenergyofdammedwater)†;•
Wind(913MW),whereturbinesgenerateelectricityfromthewind’skineticenergy;and•
Solar(205MW),wherephotovoltaic(PV)cellsconvertsunlightintoelectricalenergy.Thekey
differencebetweentheabovesystemsandconventionalhydropowerandgeothermalplantsisthattheyhavelittletonocapacityforenergystorageandaresubjecttoambientconditionssuchasseasonalriverflow,
windspeed/directionandsolarradiation.Thismakestheseplants’electricitysupplyirregularwiththeinabilitytoco-ordinateelectricaloutputwithconsumerdemand.ThereispotentialtoovercomethisissuebycombiningIRESwithstationaryenergystoragesystems(i.e.batteries).Withthiskindofhybridsystem,throughintradayshifting,anyexcess
energyproducedbythepowerplantattimesoflowdemandmaybestoredtosubsequentlysupplythegridattimesofhighdemand.Havingaccesstothisstoredrenewableenergywillminimisetheuseoffossilfuelswhenmeetingpeakdemandandalsohasthepotentialtoprovidemoreeffectiveembeddedgeneration,tomatchpeakloadandnetworkconstraints.AraAke
hasidentifiedanumberofpotentialIRESpowerplantswithinNewZealandtodemonstratesuchahybridsystemtosupportintradaygenerationshiftingandlinescompanyconstraintmanagement.Lithiumiontechnologydominatesthebatterymarketacrossmostsectors
,includingrenewableenergystorage,butitisofinterestto4AraAke
tounderstandthetechnicalandcommercialcharacteristicsofallthevariousbatterysolutionsavailableonthemarket,aswellasthesafetyandenvironmentalimpactsofthesetechnologies.†ThereisanargumentthatanumberofNewZealand’slargeconventionalhydroelectricplantsareessentiallyrun-of-the-riverbecauseoftheirlimitedstorage,howeveradistinctionismadethatiftheriverisimpoundedtocreateareservoirofsignificantsizethentheplantistechnicallynotrun-of-the-river.56ExamplesofBESSprojectsandinstallationsBytheendof2021,theinstalledcapacityofgrid-scaleBESSaroundtheworld•
InJanuary2023,RWE,a
Germanenergyprovider,commissioned117MW,128MWhexceeded
16GWandglobalinvestmentsapproached$10billionUSD6.Somerecentoflithiumionbatteriesacrosstwooftheirrun-of-the-riverplants.10
ThesystemsatGersteinwerkinWerneandEmslandstationinLingenhaveenergycapacitiesof79MWhand49MWhrespectively.Throughtheseinstallations,RWEcanmakeadditionalelectricitycapacityavailabletothegridandalsobalancetheflowofenergyfromthepowerstations,helpingtokeepthefrequencyofthepowergridstable.examples
ofbothdomesticandinternationalrenewableenergybatterystoragehybridprojectsinclude:•
InMarch2022,WELNetworksandInfratecannouncedthattheyhadenteredintomajorcontractsforthesupplyandbuildofNewZealand’sfirstrenewableenergyBESShybrid7.Alongwiththeproposedbatteryfacility,consistingofa35MW•
NewZealandgentailer,MeridianEnergy,announcedinDecember2022thatconstructionoftheRuakākāBESSatMarsdenPointwillbegininQ12023.11
Uponcompletionandcommissioning(expectedH22024),the100MW,200MWhSAFTlithiumionunitwillbehybridisedwitha
new130MWsolarPVplanttoreducecosts.12lithiumionunitfromSAFT,
anewsolarfarmisbeingexploredtoreducethecostofrenewablepowerforconsumers.ConstructionbeganinAugust2022and,oncecommissioned,thefacilitywillstoreenoughenergytomeetthedailydemandsofover2,000homesandwillbecapableofprovidingfastreservessupportfortheNorthIslandgrid.•
PortlandGeneralElectriccommissionedtheUnitedStates’firstfacilitytoco-locatewindandsolargeneration,coupledwithbatterystorage,inSeptember2022.13
TheWheatridgeRenewableEnergyFacilityhasa
300MWwindfarm,a
120MWsolarfarmanda120MWhlithiumionBESS.Atmaximumoutput,thefacilitylocatednearLexington,OregonproducesmorethanhalfofthepowerthatwasgeneratedbyOregon’slastcoalplant(demolishedthesamemonththisfacilitybecameoperational)orenoughemissions-freeenergytopowerabout100,000
homes.14•
AESChilesubmittedanEnvironmentalImpactAssessmentinlateFebruary2023foran$800MUSDhybridparkintheAntofagastaregion.Theprojectwillinvolvetheconstructionofa
140MWwindfarm,252MWofsolaranda623.5MW,
3,100MWhlithiumionBESS
.ThisproposedBESShybridfollowsonfromthe2019installation8ofa10MW,
50MWhlithiumionenergystoragesystematits178MWhrun-of-the-riverhydropowerfacilityattheCordilleraComplexnearSantiago,Chile.Priortothis2019installation,AESChile(thenAESGener)conductedananalysisonarangeofstorageoptions,finallychoosinglithiumionbatteriesbecausethetechnologyisscalingexponentiallyandwasmostfavourableintheirassessmentwhenconsideringfactorsincludingcost,safety,energydensity,charginganddischargingrates,andoverallTheexampleslistedherereflectthatlithiumionbatterystoragecurrentlyexhibitsacleardominanceintherechargeablebatterymarket,accountingformorethan90%ofallBESSdeploymentsinboth2020and2021.
Thisdominancehoweverislikelydue6toa
varietyoffactors,suchasmanufacturingcapability,asmanynewertechnologiescapableofcompetingwithlithiumionona
technicalandcommercialleveldonotyethavethemanufacturingcapacitytosupplylargeMW-scaleenergystoragesystems.lifecycle.97TechnologiesandmanufacturersAnanalysishasbeenconductedonstationary,
longdurationbatterysolutionssuitableforapplicationtointermittentrenewableenergysystems.Redox
flowbatteries(RFB)InRFBs,redox(reductionandoxidation)reactionswithinelectrochemicalcellsenablesenergytobestoredinaflowingliquidelectrolytesolutionduringbatterychargeanddischarge.Batterypowerisdependentuponthesizeoftheelectrochemicalstack,whereasbatteryenergydependsuponthevolumeofelectrolyte.Thisseparationofpowerandenergyisakey
distinctionandadvantageofRFBswhencomparedtootherelectrochemicalstoragesystemsassystemvulnerabilitytouncontrolledenergyreleaseislimitedbysystemarchitecturetoafewpercentofthetotalenergystored.22Atypical20ftcontainerisedBESSproducinggreaterthan100kWhofenergy,over12hoursorless,hasbeenusedasabaselineforthisanalysis,soonlyperceivedcompetitorstosuchaproducthavebeenincluded.Thebatterysolutionsandmanufacturerswhichhavebeenidentifiedaredetailedinthesubsequentsection.Althoughidentifiedhere,somecompaniesassociatedwiththetechnologiesofinterestdonotprovidesufficientinformationtoallowforanykindofanalyticalcomparisonbetweenproductsandthereforehavenotbeenincludedintheanalysis.Vanadium
(VRFB)•
CellCube23•
InvintyEnergySystems24•
Rongke
Power25•
VRBEnergy26LithiumionbatteriesLithiumionbatteriesutilisesolidelectrodesoftypicallycarbonandmetaloxidewithaliquidorganicelectrolytecontainingadissolvedmetalsalt.Metalionstravelbetweenelectrodesviaaporousmembrane,generatinganelectricalcurrent.15Thetwomostcommonchemistriesarelithiumironphosphate(LFP)andnickelmanganesecolbolt(NMC).ManufacturersaremovingmoretowardstheformerasdespiteNMCtypicallyhavingahigherenergydensity,LFPischeapertoproduce,hasalongerlifecycleandislesssusceptibletothermalrunaway.Zinc-Bromide(ZnBr
flow)2•
Redflow27Zinc-Air•
Zinc828Lithiumion•
CATL16Ironflow(IFB)•
ESS29•
CorvusEnergy17•
Eaton18Organic(non-metal)•
CERQ(formerlyJenaBatteries)30•
EVLO19•
SAFT20•
Tesla218MoltensaltbatteriesZinc-Bromide(ZnBr
non-flow)2Typicallyaredoxflowbatterychemistry,oxidationreductionchemistryoccursbetweenzincandbromideelectrodesviaeitherasolidgeloraqueouselectrolyteallowingzincionstoflowthroughamembrane,subsequentlygeneratingcurrent.Thesebatteriesoperatewellinexcess
of100
Candtheanodeandcathodeare0typicallyliquidseparatedbyasaltelectrolyteorceramicmembranecapableofconductingmetalionstogenerateanelectricalcurrent.•
EOSEnergyEnterprises36•
Gelion37Calcium-Antimony(CaSb)•
Ambri31Lead
(Pb)Sodium-Nickel-Chloride(NaNiCl
)2Interestingly,nolead-basedbatterieshavebeenidentifiedinthisparticularspace,likelyduetothechemistry’slowenergydensity,shortlifetimeand,asaresult,highpricewhencomparedtolithium-ion,thedominantchemistryintoday’sbatterymarket.•
FZSoNick32SodiumSulphur(NaS)•
NGKInsulators33Non-metalbatteriesOthermetalbatteriesConductivepolymerSolidcarbon-graphenehybridelectrodescombinedwithaliquidelectrolyteandapermeableseparatingmembraneenableionstotravelbetweentheanodeandcathode,creatingelectricalcurrent.Nickel-Hydrogen(NiH
)2Nickelhydroxideandnickelalloyelectrodesinthepresenceofanalkalineelectrolytecreateanelectricalcharge,producingandconsuminghydrogengasonchargeanddischarge.•
PolyJoule38•
SLB(partneredwithEnerVenue)34,359CommercialisationconsiderationsTheprevioussectiondetailsasubsetoftheplayersinthestationaryBESSmarket,howeveranimportantdiscussionpointbeyondthechemistryishowfarthroughthecommercialisationjourneyareeachofthesechemistriesand/orcompanies.Figure1:Technology
Readiness
Level
(IEA)Table
1detailsanumberofkey
commercialisationmetricswhichhavebeenidentifiedacrossthemanufacturerslistedintheprevioussection.Thesemetricsincludeyearfounded,installedbatteryvolume(inMWh),numberofemployees,revenue(in$MUSD,ifany),annualproductionvolumeandtotalagreedprojectpipeline(bothinMWh).SomeimportantthingstonoteisthatanumberofthesecompanieshavebusinessinterestsoutsideofstationaryBESS,sothenumberspresentedmaynotnecessarilybeadirectresultoftheiractivitiesrelatedtoBESS.Also,althoughtheremaybeasignificantdifferenceinsomevaluespresentedwhencomparedtoothermanufacturers,thisdoesnotnecessarilymeanthattheyareatdifferentstagesofcommercialisation,itmaysimplyreflectothermarketindicatorssuchasmarketshare(i.e.twoBESScompanieswith200and2000employeesmaybesimilarlycommercialisedwithinthemarket.Athirdcompanywith20employeesislikelysignificantlylesscommercialised).Nevertheless,themetricspresentedprovidereasonableproxiestoindicateacompany’sstageofcommercialisation.Similarlytotheprevioussection,althoughidentified,somecompaniesassociatedwiththetechnologiesofinterestdonotprovidesufficientcommercialinformationinthepublicdomaintoallowforanykindofanalyticalcomparisonbetweenproductsandthereforehavenotbeenincluded.Inthemajorityofcases,eachcompanypresenteddoesnotdetaileachandeverymetricofinterestinthepublicdomain,howevertheydoprovideenoughtomakeaneducatedcomparison.Estimatesofcommercialisationstagemaybemappedagainstthe11-pointtechnologyreadinesslevel(TRL)scalepresentedbytheInternationalEnergyAgency(seeFigure1).3910TherangewhichisrelevanttothemanufacturersincludedisestimatedtobeTRL7toTRL11,pre-commercialdemonstrationtomatureinmarket:TRL11:Matureinmarket
(verylargeproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.>1GWh,revenuelikely>$50MUSD)•
CATL•
CorvusEnergy•
NGKInsulators•
Rongke
Power•
SAFT•
TeslaTRL10:Earlyadoptioninmarket
(largeproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.100MWh-1GWh,revenuelikely$10M-$50MUSD)•
CellCube•
EOSEnergyEnterprises•
FZSoNick(acquiredbyHitachiChemical-$5.8BUSDrevenuein2021)SometakeawaysfromthisTRLmappinginclude:TRL9:Commercialoperation(significantproductvolumesmanufactured,deliveredanddemonstratedinfieldi.e.10MWh-100MWh,revenuelikely$1M-$10MUSD)•
Oldertechnologies,withfewerrecentdevelopments,suchaslithiumion,vanadiumflowandmoltensodiumbatteriesarehigheruptheTRLscale.•
InvintyEnergySystems•
VRBEnergy•
Ofthenewertechnologies,EOSEnergyEnterprises(non-flowzinc-bromide)appearstohaveasignificantcommercialadvantageoveritscompetitors,generatingover$10MUSDinrevenuein2022withatleasta1.8GWhprojectpipeline.TRL8:Commercialdemonstration(smallproductvolumesunderdemonstrationwithsignificantgrowthinmanufacturingi.e.1MWh-10MWh,revenuelikely$100K-$1MUSD)•
CompanieslowerontheTRLscale(TRL7-8)willhaveasignificantnumberofcommercialisationbarriers(forexample,manufacturingandsupplychain)tocrossbeforegainingearlyadoptioninthemarket.Thiswillbesignificantlymorechallengingforindependentcompanieswhencomparedto,forexample,EnerVenue(nickel-hydrogen),whohavebackingfromglobal,multibilliondollarengineeringcompany,Schlumberger(nowmarketedasSLB).•
Ambri•
EnerVenue
(globallybrandedasSLB-$28.1B
USDrevenuein2022)•
ESS•
RedflowTRL7:Pre-commercialdemonstration(onlysmallproductvolumesmanufactured,deliveredanddemonstratedinfield,minimalorpre-revenue)•
Gelion•
PolyJoule•
Zinc811Table
1:CommercialmetricsofbatterymanufacturersChemistryManufacturerFoundedYearDispatchedvolumeMWhEmployees#Revenue*ProductionvolumeMWh/yearPipelinevolumeMWh$MUSD/year170,000(Additional140,000peryearunderconstruction)Approx.33,000CATLCorvusEnergySAFT201120091918-400-14,36440----61(2020)41192>1,000Lithiumion170,000(Total
plannedproductionby2025)780>4,000128,000(58MforBESS)4281,462(10,000non-automotive)43Tesla2003>17,00040,000(Megapackonly)CellCubeInvintyEnergySystemsRongke
PowerVRBEnergy20082020200820072008201542.928.0992>3061171-4.09(2019)44---3.245-66.3Vanadium300--652505062->500EOSEnergyStorageGelion64018.40.43461.12478002>1,800Pilotscale>2#--Zinc-basedRedflow2005800(Goaltogenerateby2024)481(Ambitionof60MWhby2024)Zinc82011Pilotscale44-FZSoNick49NGKInsulators51ESS2011191920114004,100-13020,10018332.2(2019)5040411001,000750-Sodium-based-Ironflow0.8752>12,00053200(200,000cellsbyendof2023)Calcium-AntimonyAmbri2010Commercialpilot#122->1,2005460(2,200plannedby2024;31,000by2027)Nickel-HydrogenOrganicEnerVenue
(SLB)PolyJoule20202011CommercialpilotPilotscale11011-->5,00055<1>1(10000cells)*RevenuedatahasbeengainedfromGoogleFinanceQ32021toQ32022,unlessspecifiedotherwise.Unknowndatanotavailableinthepublicdomainhasbeenindicatedwithadash.Pilotscalereferstoinstallationslessthan1MWh.Commercialpilotreferstoinstallationsbetween1–2MWh.#12AnalysisThedatapresentedinthissectioniseitherpubliclyavailableorhasbeengainedthroughdirectconsultationwiththemanufacturer.
Forthosetechnologieswithmultipleplayers(i.e.lithiumionandvanadiumflow),batterydatahasbeenaggregatedandaveragevaluesarepresented.Theraw,
non-aggregateddataisprovidedintablesintheAppendix.Figure2:Effectiveenergydensityofbatterytechnologies150Technical
comparisonEffectiveenergydensityTheenergydensityofbatteriesistypicallypresentedinwatt-hourspergram(Wh/gorkWh/kg).Thisprovidesareasonablecomparisonwhentheuseableenergyoutputandweightofthebatteryisknown,however,
inthecaseofcontainerisedenergystoragesystems,thereissignificantvoidagewithinthecontainerforthepurposeofmaintenance,airflowetc.Thismeansthatonlyaneffectiveenergydensitycanbedeterminedusingtheuseableenergyoutputandtheweightofthecontainerisedsystem.100500Thisapproachisalsochallengingassomemanufacturersdonotprovidetheweightofthecontainerisedsystem,however,
allprovidetheareafootprintofthesystemforagivenenergyoutput,enablinganeffectiveenergydensityofkWh/m
tobepresented2inFigure2.Notethatanadvantageofcontainerisedsystemsisthattheymaybestacked,however,
forthepurposeofthiscomparison,thefootprintdensityhasonlybeenpresentedforasystemwithasinglecontainer.Lithiumionhasthehighestaverageenergydensityofthetechnologiescomparedatapproximately145kWh/m
.Thisobservationisnotsurprisingaslithiumionisknown2forhavingaparticularlyhighenergydensitywhencomparedtootherrenewablebatterytechnologies.56
Thisisthenfollowedbymolten-saltbatteries(calcium-antimony,sodium-nickel-chloride,sodium-sulphur),whicharealsoknownforhighenergydensities,57
atapproximately80kWh/mflowandnon-flowbatteryconfigurations,hasaneffectiveenergydensityof30kWh/.Thisdensityissimilartonickel-hydrogen(25kWh/m
),butmuchhigherthanotherflowchemistries(Vanadium,10kWh/m
;Iron,15kWh/m
).Duetoitsearlystageof2.Zinc-brominetechnology,inbothm2222development,theconductivepolymerbatteryhasalowenergydensityof15kWh/msimilartoverylargeredoxflowsystems.2,13Batterycyclingnickel-hydrogentechnology(>1000MWh/m2-lifetime)whilstthefourremaininglithium-lifetime.ionproductshaveoutputsoflessthan650MWh/m2Thelifetimeofabatteryismeasuredbythetotalnumberofcharge/dischargecyclesabatterycanachievebefore:Onanannualbasis,duetohavinghighenergydensities,lithiumionhasthehighestenergyoutput(43MWh/m
-year,
aggregated;76MWh/m2-year,Tesla),
followedbythemoltensaltcalcium-antimonybattery(30MWh/m
-year).Interestingly,despitehavingarelativelylowenergydensity,nickel-hydrogenhasthethirdhighestoutputof24MWh/m
-year(joint
withsodium-nickel-chloridemoltensalttechnology)duetothetechnology’scapabilitytocyclethreetimesperday.2•
Thebatterycannolongerholdacharge;or2•
Significantenergycapacitydegradationhasoccurred.2Ofthebatterytechnologiesinvestigated(seeFigure3),nickel-hydrogeniscapableofachievingatleast30,000cyclesinitslifetime.Thisisfollowedbyvanadiumandironredoxflowbatterieswithlifetimesofapproximately20,000cycles
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行贷款进货合同(2篇)
- 2024-2025学年初中同步测控优化设计物理八年级下册配人教版第11章 第4节 机械能及其转化含答案
- 荷花 作文 课件
- 西京学院《中国文化经典选读》2022-2023学年第一学期期末试卷
- 西京学院《土木工程施工技术与组织》2022-2023学年第一学期期末试卷
- 西京学院《建筑工程计量与计价》2022-2023学年第一学期期末试卷
- 西京学院《非线性编辑》2022-2023学年第一学期期末试卷
- 西京学院《大数据存储与管理技术》2023-2024学年期末试卷
- 西华师范大学《学科课程标准与教材研究》2021-2022学年第一学期期末试卷
- 西华师范大学《外国史学史》2022-2023学年第一学期期末试卷
- 只争朝夕不负韶华岗位竞聘述职报告
- 配料个人述职报告
- 农场工作制度与农民岗位职责
- 2024年山东公务员考试行测真题及解析【完美打印版】
- 金属锌行业前景分析
- 茶百道选址策略分析报告
- 做新时代的青年马克思主义者讲课
- 田赛裁判法与规则2
- 社区心肺复苏术普及
- 冬枣植保知识培训课件
- 校园突发事件与应急管理课件
评论
0/150
提交评论