2024届河南省开封市第十七中学高一上数学期末预测试题含解析_第1页
2024届河南省开封市第十七中学高一上数学期末预测试题含解析_第2页
2024届河南省开封市第十七中学高一上数学期末预测试题含解析_第3页
2024届河南省开封市第十七中学高一上数学期末预测试题含解析_第4页
2024届河南省开封市第十七中学高一上数学期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省开封市第十七中学高一上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数则的值为()A. B.0C.1 D.22.已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3} B.{0,1,4}C.{0,1,3} D.{1,3,4}3.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位4.设θ为锐角,,则cosθ=()A. B.C. D.5.若,则()A. B.C. D.6.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.87.高斯是德国著名的数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B.C. D.8.已知函数(其中)的图象如下图所示,则的图象是()A. B.C. D.9.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要10.函数的图象如图所示,则函数y的表达式是()A. B.C. D.11.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R12.若,则的值为()A. B.C.或 D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB相交(包含端点的情况),则实数m的取值范围是________________.14.cos(-225°)=______15.潮汐是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动.习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流.早先的人们为了表示生潮的时刻,把发生在早晨的高潮叫潮,发生在晚上的高潮叫汐,这是潮汐名称的由来.下表中给出了某市码头某一天水深与时间的关系(夜间零点开始计时).时刻(t)024681012水深(y)单位:米5.04.84.74.64.44.34.2时刻(t)141618202224水深(y)单位:米4.34.44.64.74.85.0用函数模型来近似地描述这些数据,则________.16.已知函数集合,若集合中有3个元素,则实数的取值范围为________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.18.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.19.已知函数.(1)求函数的定义域;(2)设,若函数在上有且仅有一个零点,求实数的取值范围;(3)设,是否存在正实数,使得函数在内的最大值为4?若存在,求出的值;若不存在,请说明理由.20.设1若对任意恒成立,求实数m的取值范围;2讨论关于x的不等式的解集21.已知向量,,.(Ⅰ)若关于的方程有解,求实数的取值范围;(Ⅱ)若且,求.22.如图,已知多面体PABCDE的底面ABCD是边长为2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为45°,求直线CD与平面PCE所成角的正弦值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.2、C【解析】根据并集的定义可得集合A中一定包含的元素,再对选项进行排除,可得答案.【详解】∵集合A∪B={0,1,2,3,4},B={1,2,4};∴集合A中一定有元素0和3,故可排除A,B,D;故选:C.3、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同4、D【解析】为锐角,故选5、A【解析】令,则,所以,由诱导公式可得结果.【详解】令,则,且,所以.故选:A.6、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.7、B【解析】先利用换元思想求出函数的值域,再分类讨论,根据新定义求得函数的值域【详解】(),令,可得,在上递减,在上递增,时,有最小值,又因为,所以当时,,即函数的值域为,时,;时,;时,;的值域是故选:B【点睛】思路点睛:新定义是通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.8、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】解:由图象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A9、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A10、A【解析】由函数的最大、最小值,算出和,根据函数图像算出周期,利用周期公式算出.再由当时函数有最大值,建立关于的等式解出,即可得到函数的表达式.【详解】函数的最大值为,最小值为,,,又函数的周期,,得.可得函数的表达式为,当时,函数有最大值,,得,可得,结合,取得,函数的表达式是.故选:.【点睛】本题给出正弦型三角函数的图象,求它的解析式.着重考查了三角函数的周期公式、三角函数的图象的变换与解析式的求法等知识属于中档题.11、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理12、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】本道题目先绘图,然后结合图像判断该直线的位置,计算斜率,建立不等式,即可.【详解】要使得与线段AB相交,则该直线介于1与2之间,1号直线的斜率为,2号直线的斜率为,建立不等式关系转化为,所以或解得m范围为【点睛】本道题考查了直线与直线的位置关系,结合图像,判断直线的位置,即可.14、【解析】直接利用诱导公式求知【详解】【点睛】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”15、##【解析】根据题意条件,结合表内给的数据,通过一天内水深的最大值和最小值,即可列出关于、之间的关系,通过解方程解出、,即可求解出答案.【详解】由表中某市码头某一天水深与时间的关系近似为函数,从表中数据可知,函数的最大值为5.0,最小值为4.2,所以,解得,,故.故答案为:或写成.16、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.18、(1)(2)【解析】(1)利用三角恒等变换,将函数转化为,由求解;(2)由得到,再由,利用二倍角公式求解.【小问1详解】解:,,,由,得,即,又,故的解集为.【小问2详解】由,得,因为为锐角,所以,则,故,,.19、(1);(2);(3)存在,.【解析】(1)根据对数函数的定义域列不等式求解即可.(2)由函数的单调性和零点存在定理,列不等式求解即可.(3)由对勾函数的性质可得函数的单调区间,利用分类讨论的思想讨论定义域与单调区间的关系,再利用函数的最值存在性问题求出实数的值.【详解】(1)由题意,函数有意义,则满足,解得,即函数的定义域为.(2)由,且,可得,且为单调递增连续函数,又函数在上有且仅有一个零点,所以,即,解得,所以实数的取值范围是.(3)由,设,则,易证在为单调减函数,在为单调增函数,当时,函数在上为增函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上为减函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上减函数,在上为增函数,所以最大值为或,解得,符合题意,综上可得,存在使得函数的最大值为4.【点睛】本题考查了对数函数的定义域问题、零点存在定理、对勾函数的应用,考查了理解辨析的能力、数学运算能力、分类讨论思想和转化的数学思想,属于一般题目.20、(1);(2)见解析.【解析】1由题意可得对恒成立,即有的最小值,运用基本不等式可得最小值,即可得到所求范围;2讨论判别式小于等于0,以及判别式大于0,由二次函数的图象可得不等式的解集【详解】1由题意,若对任意恒成立,即为对恒成立,即有的最小值,由,可得时,取得最小值2,可得;2当,即时,的解集为R;当,即或时,方程的两根为,,可得的解集为【点睛】本题主要考查了不等式的恒成立问题,以及一元二次不等式的解法,注意运用转化思想和分类讨论思想方法,考查运算能力,属于中档题21、(1)(2)【解析】(Ⅰ)向量,,,所以.关于的方程有解,即关于的方程有解.因为,所以当时,方程有解,即解得实数的取值范围;(Ⅱ)因为,所以,即.当时,,由,解得当时,,由,解得.试题解析:(Ⅰ)∵向量,,,∴.关于的方程有解,即关于的方程有解.∵,∴当时,方程有解.则实数的取值范围为.(Ⅱ)因为,所以,即.当时,,.当时,,.22、(1)见解析(2)2【解析】1连接BD,交AC于点O,设PC中点为F,连接OF,EF,先证出BD∥EF,再证出EF⊥平面PAC,,结合面面垂直的判定定理即可证平面PAC⊥平面PCE;2先证明∠PCA=45°,设CD的中点为M,连接AM,所以点P到平面CDE的距离与点A到平面CDE的距离相等,即h2解析:(1)证明:连接BD,交AC于点O,设PC中点为F,连接OF,EF∵O,F分别为AC,PC的中点,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四边形OFED为平行四边形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE⊂平面PCE,∴平面PAC⊥平面PCE(2)因为直线PC与平面ABCD所成角为4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论