版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11轴对称图形的经典压轴题型专训【精选2023年最新轴对称36道经典压轴题型专训】1.(2023·安徽亳州·统考三模)如图,,垂直平分,,若,则()A. B. C. D.【答案】A【分析】由垂直平分,可得,进而得出,由,即可得到,依据平行线的性质可得,由等腰三角形的性质可得,最后由三角形内角和定理进行计算,即可得到的度数.【详解】解:垂直平分,,,又,,,,又,,又,,,,故选:A.【点睛】本题主要考查了线段垂直平分线的性质、平行线的性质、等腰三角形的性质、三角形内角和定理,熟练掌握线段垂直平分线的性质、平行线的性质、等腰三角形的性质、三角形内角和定理,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,是解题的关键.2.(2023秋·河北邢台·八年级校考阶段练习)如图,在中,,,是边上的高,的平分线交于点,交于点,则图中等腰三角形的个数为(
)
A.1 B.2 C.3 D.4【答案】C【分析】根据三角形的高得到,根据直角三角形两锐角互余得到,,根据等角对等边推出是等腰三角形;根据角平分线得到,推出是等腰三角形;根据三角形内角和定理得到,根据三角形外角性质得到,推出是等腰三角形.【详解】解:∵是边上的高线,∴,∵,,∴,,∴,∴是等腰三角形;∵是的平分线,∴,∴,∴,∴是等腰三角形;∵,,∴,故为等腰三角形;综上分析可知,等腰三角形有3个,故选:C.【点睛】本题主要考查了三角形的内角和,三角形的高,角平分线,等腰三角形.解题关键是熟练掌握三角形的内角和定理及其推论,三角形高的定义,角平分线定义,等腰三角形的判定.3.(2023春·山东济南·七年级济南育英中学校考阶段练习)如图,在五边形中,,,,,在、上分别找到一点M、N,使得的周长最小,则的度数为()
A. B. C. D.【答案】C【分析】根据要使的周长最小,即利用点的对称,让三角形的三边在同一直线上,A关于和的对称点,,即可得出,进而得出即可得出答案.【详解】解:作A关于和的对称点,,连接,,交于M,交于N,则,即为的周长最小值.作延长线,
∵,∴,∴,∵,,且,,∴,故选:C.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.4.(2023春·全国·七年级期末)如图,在中,,,,,如果点D,E分别为,上的动点,那么的最小值是()
A.8.4 B.9.6 C.10 D.10.8【答案】B【分析】如图所示,作点A关于的对称点,连接,,,则,,故,由此推出当、D、E三点共线时,,最小值即为的长,当最小时,即满足,故根据三角形的面积即可求得的最小值.【详解】解:作点A关于的对称点,作点,交于点D,连接,如图:
则,∴.即的最小值为.∵,,,,∴,∵,∴,即的最小值为9.6.故选:B.【点睛】此题考查了轴对称最短路径问题,垂线段的性质,根据三角形的面积求高等,熟练掌握以上性质是解本题的关键.5.(2023春·陕西西安·八年级高新一中校考期末)如图,在中,点是边上的一点,,且的面积为,则的周长的最小值是(
)
A.10 B.12 C.14 D.16【答案】D【分析】利用已知条件可以求出边的长度,再根据“将军饮马”问题,求最短距离即可.【详解】如图1,过作,作点关于直线对称点,交于点,连接,交于点,∴,
由,∴,,∴;∵,即,∴,解得:,∴,要使周长最小,则需点与重合时,即点共线时,如图2由勾股定理得:,∴的周长的最小值是,故选:.【点睛】本题考查了求线段和最短距离,解题的关键是灵活利用轴对称的有关定理及将军饮马数学模型.6.(2023春·山东济南·八年级校联考期中)如图所示,已知和都是等边三角形,且,,三点共线,下列结论:①平分;②是等边三角形;③;④.其中正确的有(
)A.个 B.个 C.个 D.个【答案】D【分析】过作于,于,由题中条件可得,得出对应边、对应角相等,进而得出,,再由边角关系即可求解题中结论是否正确,进而可得出结论.【详解】解:与为等边三角形,,,,,即,,,,,,,又,,,,过作于,于,,,,,平分,正确;是等边三角形,正确;,∴,正确;,,,,平分,,,在和中,,,,同理可得,,正确;故选:D.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.(2023秋·八年级单元测试)如图,,,,是延长线上一点,,垂足为,下列结论:①;②;③四边形的面积等于;④;其中正确的是(
)A.①② B.②③ C.①②③ D.①②③④【答案】C【分析】证明,得出,故①正确;由,得出,,得出,进而得出为等腰直角三角形,故②正确;由得出故③正确;由不能确定,故④不正确,即可得出答案.【详解】解:,,,,,,在和中,,,,故①正确;,,,,,,故②正确;,,故③正确;,不能确定,故④不正确.故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,证明三角形全等是解题的关键.8.(2023·全国·九年级专题练习)如图,,点到的距离是2,到的距离是3,,分别是,上的动点,则周长的最小值是(
)A. B. C.9 D.【答案】A【分析】作点分别关于、的对称点、,连接,分别交、于,则,,,,′,则,,此时周长最小,为,据此解答即可.【详解】作点分别关于、的对称点、,连接,分别交、于,,则,,,,′,∴,,∴此时周长最小,为,延长,交与.∵,∴,∴,∴,∵,∴,∴,∴,∴,∴,即周长的最小值是.故选:A.【点睛】本题考查了轴对称−最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.9.(2023秋·黑龙江牡丹江·八年级统考期末)如图,已知和都是等腰直角三角形,,,交于点F,连接,下列结论:①;②;③;④平分;⑤,其中结论正确的序号是(
)A.①②③④ B.①②④⑤ C.①③④⑤ D.①②③⑤【答案】D【分析】证明,证明,再利用全等三角形的性质即可判断①②;由可得,再由,证得即可判断③;分别过A作,,根据全等三角形面积相等和,证得,即可得平分,可无法得到平分,可判断④;由平分结合即可判断⑤.【详解】解:∵,∴,即,∵和都是等腰三角形,∴,,在和中,,∴,∴,,故①②符合题意;设与交于点G,∵,∴,∵,,∴,∴,即,故③符合题意;分别过A作,垂足分别为M、N,∵,∴,∴平分,∴,若平分,∴,∴,而,∴,∴,与题干条件互相矛盾,故④不符合题意;∵平分,,∴,故⑤符合题意.综上,正确的是①②③⑤,故选:D.【点睛】本题考查了等腰三角形的定义,全等三角形的判定与性质、三角形内角和定理,角平分线的判定与性质等知识,熟练证明三角形全等是解答本题的关键.10.(2023·安徽合肥·校联考三模)如图,在中,,若D是边上的动点,则的最小值是(
)A.6 B.8 C.10 D.12【答案】D【分析】过点C作射线,使,再过动点D作,垂足为点F,连接,在中,当A,D,F在同一直线上,即时,的值最小,最小值等于垂线段的长.【详解】解:过点C作射线,使,再过动点D作,垂足为点F,连接,如图所示:在中,,∴,∵=,∴当A,D,F在同一直线上,即时,的值最小,最小值等于垂线段的长,此时,,∴是等边三角形,∴,在中,,∴,∴,∴,∴,∴,∴的最小值为12,故选:D.【点睛】本题考查垂线段最短、勾股定理等知识,解题的关键是学会添加辅助线,构造胡不归模型,学会用转化的思想思考问题,属于中考选择或填空题中的压轴题.11.(2023·天津·模拟预测)如图,中,,点M,N分别在,上,将沿直线翻折,点A的对应点D恰好落在边上(不含端点B,C),下列结论:①直线垂直平分;②;③;④若M是中点,则.其中一定正确的是(
)A.①② B.②③ C.①②④ D.①③④【答案】C【分析】①根据将沿直线翻折,点A的对应点D恰好落在边上(不含端点B,C),证明直线垂直平分,故①正确;②先由①得,直线垂直平分,则,,再根据”等边对等角“证明,,则,再根据是的一个外角,是的一个外角,证明,,进一步证明,根据,得到,则,然后根据,证明,从而得到,故②正确;③证明与不一定相等,得到与不一定相等,故③错误;④先根据是的中点,证明,再由①得,直线垂直平分,则,再证明,最后证明,即,故④正确.【详解】①∵将沿直线翻折,点A的对应点D恰好落在边上(不含端点B,C),∴直线垂直平分,故①正确;②由①得,直线垂直平分,∴,,∴,,∴∵是的一个外角,是的一个外角,∴,∴,∴,∴,∴,∴又∵,∴即,又∵(已证),∴,故②正确;③∵,∴,∴又∵,∴与不一定相等,∴与不一定相等,∴与不一定相等,故③错误;④∵是的中点,∴,∵,∴,∴,,又,∴,∴,∴,故④正确;综上所述,一定正确的有①②④,故选:C.【点睛】本题考查垂直平分线的性质,三角形外角的性质,三角形内角和定理,直角三角形斜边中线的性质,解题的关键是能够根据题意的条件,进行恰当的推理论证.12.(2023秋·重庆大足·八年级校联考期末)如图,在等边中,于,是线段上一点,是边上一点,且满足,是的中点,连接,则下列四个结论:①;②;③;④;⑤当时,,其中错误的个数有()A.0 B.1 C.2 D.3【答案】A【分析】根据等腰三角形的“三线合一”可得到,故①正确;根据线段垂直平分线的性质得,再根据三角形内角和定理推论可得,再根据即可求得,故②正确;根据等腰三角形性质,可得,,进而得到,再根据,可得,从而可判定③正确;根据等腰三角形的“三线合一”,可得,再根据直角三角形角所对的直角边是斜边的一半即可判定④正确;根据可以得到,再根据,得到,由等角对等边即可求得,即⑤正确;最后根据题意得出结论.【详解】如图:连接是等边三角形,,,,,故①正确;,,,,,,,,故②正确;,,故③正确;,是的中点,,,故④正确;,,,,故⑤正确;故选:A【点睛】本题主要考查了等边三角形和等腰三角形的性质,有一角为的直角三角形的性质,熟练掌握等腰三角形和等边三角形的性质是解本题的关键.13.(2023春·辽宁丹东·七年级统考期末)在锐角中,,将沿翻折得到,直线与直线相交于点E,若是等腰三角形,则的度数为.【答案】或【分析】分三种情形:当,点E在和的延长线上,当,点E在和的延长线上,分别画出图形,分别求解即可.【详解】解:①如图,当,点E在和的延长线上,
∵,∴,由折叠得:,,设,则,,,在中,由三角形内角和定理得:,∴,即,∴,∵,∴此时为锐角三角形,符合题意;②如图,当,点E在和的延长线上,
∵,∴,由折叠得:,,∵,∴,∴,∵,∴,∴,∵,∴此时为锐角三角形,符合题意;综上所述,满足条件的的度数为或.故答案为:或.【点睛】本题考查翻折变换,等腰三角形的性质、三角形的内角和定理、三角形的外角性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.14.(2023春·福建龙岩·七年级校考阶段练习)如图1纸片(),将按如图2所示沿着折叠至,与线段交于,,点在线段上,若将按如图3所示沿着折叠至,且在线段的延长线上,点在线段上,则.(用含的式子表示)
【答案】【分析】先根据邻补角性质求得,再由平行线性质与折叠性质求得,再根据折叠性质求得,最后用角的和差求得结果便可.【详解】解:,,,,,由折叠性质得,,.故答案为:.【点睛】本题主要考查了平行线的性质,折叠性质,角的和差,关键是根据平行线的性质解题.15.(2023春·辽宁丹东·八年级统考期末)如图,在中,,,,点为上一点,将线段绕点顺时针旋转得线段,点在射线上,当的垂直平分线经过一边中点时,的长为.
【答案】2或3或5【分析】本题需考虑经过各边中点,共三种情况,依次讨论即可.【详解】解:,,,,,的垂直平分线经过一边中点,可分为以下三种情况:经过的中点;经过的中点;经过的中点.当经过的中点时,交于点,如图:,
绕点顺时针旋转得线段,,,是的外角,,垂直平分,,是等边三角形,,,;当经过的中点时,交于点,如图:,
,垂直,,,在中,,,,点在上,,,是的外角,,,,在中,,∴,由勾股定理得:;当经过的中点时,交于点(),如图:,
同理可证:,在中,,,.综上:的长为:2或5或3.故答案为:2,3或5.【点睛】本题综合考查了垂直平分线,含角的直角三角形,三角形外角的性质,勾股定理,等腰三角形的性质等知识点.分类讨论思想是解题的关键,同时也是本题的易错点.16.(2023春·陕西西安·七年级校考阶段练习)如图,边长为a的等边中,BF是AC上的中线且,点D在BF上,连接AD,在AD的右侧作等边,连接EF,则周长的最小值是,此时.
【答案】/90度【分析】通过分析点E的运动轨迹,点E在射线上运动(),作点A关于直线的对称点M,连接交于点,此时的值最小【详解】解:∵,均为等边三角形,∴,∴,∴,∴,∴,∴∴点E在射线上运动()作点A关于直线的对称点M,连接交于点,此时的值最小,
∵∴是等边三角形,∴,∵,∴,∴周长的最小值是,故答案为:,【点睛】本题考查轴对称最短问题、等边三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明点E的运动轨迹,本题难度比较大,属于中考填空题中的压轴题.17.(2023春·福建漳州·七年级福建省漳州第一中学校考期末)如图,在中,D是的中点,,,延长至点M,使得,连接并延长,交的延长线于点N,现给出以下结论:
①;②;③;④.其中正确的是.(写出所有正确结论的序号)【答案】①③/③①【分析】证明垂直平分,得出,即可证明,即可判断①;设,则,得出,求出,得出,证明,即可判断③;求出,,得出,得出与不一定全等,即可判断②;根据,得出,从而得出,即可判断④.【详解】解:∵在中,D是的中点,,∴垂直平分,∴,∵,∴,故①正确;∵,,∴,设,则,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴,∵,∴,∴,∴,故③正确;∵,,∴,∵,∴,∴与不一定全等,故②错误;∵,,,∴,∵,,∴,∴,故④错误;综上分析可知,正确的有①③.故答案为:①③.【点睛】本题主要考查了三角形内角和定理的应用,三角形面积的计算,全等三角形的判定,等腰三角形的判定和性质,垂直平分线的性质,三角形外角的性质,解题的关键是熟练掌握相关的判定和性质.18.(2023春·广东深圳·七年级校考期末)如图,已知在四边形中,,,,则°.
【答案】35【分析】延长至E,使,连接,根据三角形内角和与外角的关系可得使等腰直角三角形,,载利用等腰三角形的性质可得出结论.【详解】解:延长至E,使,连接,如下图所示:
∵,∴,∵,∴,在中,,∴,∴,又∵,∴,∵,∴使等腰直角三角形,∴,∴,∴,∴,,故答案为:35.【点睛】本题主要考查三角形的相关知识,运算较为复杂,要掌握好基本知识.19.(2023春·广西南宁·七年级南宁二中校考期末)如图,在中,D为中点,,,于点F,,,则的长为.
【答案】【分析】连接,过点E作,交的延长线于N,由,可得;由D为中点,,则可得;证明,再证明即可求得结果.【详解】解:连接,过点E作,交的延长线于N,如图,∵,,∴;∵D为中点,,∴;∵,,∴,∵,∴,∴;∵,,,∴,∴,∴,即,∴.
故答案为:.【点睛】本题考查了线段垂直平分线的性质,全等三角形的判定与性质,掌握这两个性质是关键.20.(2023春·黑龙江哈尔滨·七年级哈尔滨市第十七中学校校考阶段练习)如图,在中,,是它的角平分线,且交的延长线于点E,过E作于点F,,,则线段DF的长为.
【答案】6【分析】过点D作,垂足为H,则,利用角平分线的性质可得,再证明,设,继而求解即可.【详解】过点D作,垂足为H,则,
∵,∴,,∵是的角平分线,∴,,∵,∴,∴,,∵,∴,∵,∴,∴,∴,∵,∴,∴,∴,∴,∴,∵,∴设,∴,∴,∵,∴∴,故答案为:6.【点睛】本题考查了直角三角形中两锐角互余,角平分线的定义和性质,对顶角相等,等腰三角形的判定和性质,全等三角形的判定和性质线段的和差等知识,熟练掌握知识点,并运用方程的思想,添加适当的辅助线是解题的关键.21.(2023·黑龙江哈尔滨·校考三模)如图,四边形ABCD中,且,过点A作交BC于点E,若,则
【答案】8【分析】如图所示,在延长线上取一点F使得,过点A作交延长线于G,连接,证明是等边三角形,得到,再根据平行线的性质求出,;证明得到,进而求出,则,即可得到,则.【详解】解:如图所示,在延长线上取一点F使得,过点A作交延长线于G,连接,∵,∴,∴是等边三角形,∴,∵,∴,,∴,,∵,∴∵,∴,又∵,∴,∴,∴,∴,∴,∴,故答案为:8.
【点睛】本题主要考查了全等三角形的性质与判定,含30度角的直角三角形的性质,等边三角形的性质与判定,三角形内角和定理等等,正确作出辅助线构造全等三角形是解题的关键.22.(2023·黑龙江哈尔滨·哈尔滨工业大学附属中学校校考二模)在中,,点D在内部,且满足,若的面积为13,则.【答案】【分析】过点作的垂线段,交的延长线于点,根据题意证明,即可得,根据三角形的面积公式,即可解答.【详解】解:如图,过点作的垂线段,交的延长线于点,,,,设的度数为,则的度数为,,,,,,,,在与中,,,,设,,可得方程:,解得,(舍去),故.故答案为:.【点睛】本题考查了全等三角形的判定及性质,等腰直角三角形的性质,角度的等量代换,作出辅助线是解题的关键.23.(2023春·安徽宿州·八年级校考阶段练习)如图,在中,,,为线段边上的动点,以为边向上作等边,连接、,则的最小值为【答案】【分析】以为边,在的左侧作等边,连接,先根据“"证明,从而得出,然后根据,,可证F,A,C在同一条直线上,根据“两点之间,线段最短”可得的最小值为,即可求解.【详解】解:如图:以为边,在的左侧作等边,连接,和都是等边三角形,,,,,即,在与中,,,,,,点F,A,C在同一条直线上,,,当点C,E,F在同一直线上时,取最小值,最小值为,,,,,即的最小值为,故答案为:.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、两点之间,线段最短等知识,构造,从而把求的最小值转化为的最小值是解题的关键.24.(2023·江苏扬州·统考一模)如图,在中,M,N分别为,上的点,将沿翻折,得到,连接,,已知,若,,,则的长为.【答案】/【分析】延长,交的延长线于点D,利用角度互余证明,即有,利用,可得,即有,即可得,问题随之得解.【详解】延长,交的延长线于点D,如图,根据折叠的性质有:,∴,∵,∴,,∴,∴,∵,∴,∴,∴,∵,,∴,,∴,故答案为:.【点睛】本题考查了三角形折叠的性质,平行线的性质,等角对等边的知识,构造出合理的辅助线是解答本题的关键.25.(2023秋·河北邢台·八年级统考期末)在中,延长到D,使,点E是下方一点,连接,且.
(1)如图1,求证:;(2)如图2,若,将沿直线翻折得到,连接,连接交于G,当时,求的长度;(3)如图3,若,将沿直线翻折得到,连接,连接交于G,交于H,若,求线段的长度(用含m,n的代数式表示).【答案】(1)见解析(2)(3)【分析】(1)根据条件和可得,即可证明;(2)根据条件和可得,进而得到即可求出;(3)证明,,可得结论.【详解】(1)证明:∵,又∵,∴,在和中,,∴;(2)解:由(1)可知,∴,由翻折变换的性质,,∴,∵,∴,∴,∵,∴;(3)解:由(1)可知,,∴,由翻折变换的性质可知,,∴,∵,∴,∴,∵,∴,∴,∴;【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.26.(2023秋·湖南永州·八年级统考期末)在中,,,直线经过点,于点,于点.
(1)操作发现:若直线不与线段相交,如图①所示,你能发现线段与之间的数量关系吗?并证明你发现的结论.(2)类比猜想:若直线l绕点C旋转到与线段相交,如图②所示,猜想(1)中的结论是否仍然成立?并说明理由.(3)拓展探究:Ⅰ:如图③所示,直线不与线段相交,点是的中点,连接,,试探究的形状,并说明理由.Ⅱ:如图④所示,直线绕点旋转到与线段相交,且,点是的中点,连接,.请判断的形状:______.【答案】(1),见解析(2)成立,见解析(3)Ⅰ:见解析;Ⅱ:等腰直角三角形【分析】(1)通过证明即可解答;(2)通过证明即可解答;(3)Ⅰ:通过证明可得,,再根据等腰三角形的性质可等量代换可得,即可说明是等腰直角三角形;Ⅱ:方法同Ⅰ.【详解】(1)解:发现结论:,证明如下:∵,,∴,∴,又∵,∴,
∴,在和中,,∴,
∴.(2)解:猜想(1)中的结论仍然成立,即,理由如下:∵,,∴,∴,又∵,
∴,
∴,在和中,,∴,
∴.(3)解:如图③,连接,由(1)知,
∴,,∵在中,,,点是的中点
∴∴,,即在和中,∴,∴,∵,点是的中点∴,即∴,即∴是等腰直角三角形;Ⅱ:是等腰直角三角形,理由如下:解:如图④,连接,由(1)知,
∴,,∵在中,,,点是的中点
∴∴,,即在和中,∴,∴,,∵,点是的中点,∴,即∴,即∴是等腰直角三角形.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的性质、等腰三角形的判定等知识点,灵活运用全等三角形的判定与性质是解答本题的关键.27.(2023春·辽宁丹东·七年级统考期末)
(1)如图1,两个等腰三角形和中,,,,连接,.则_______________,此时线段和线段的数量关系式_____________________;(2)如图2,两个等腰直角三角形和中,,,,连接,,两线交于点P,请判断线段和线段的关系,并说明理由;(3)如图3,分别以的两边,为边向外作等边和等边,连接,,两线交于点P.请直接写出线段和线段的数量关系及的度数.【答案】(1),;(2)且;(3),【分析】(1)先判断出,进而判断出,即可得出结论;(2)先判断出,得出,,进而判断出,即可得出结论;(3)先判断出,得出,,进而求出,最后用三角形外角的性质,即可得出结论.【详解】解:(1),.即,在和中,,,,故答案为:,;(2)且;理由如下:,.即.在和中,,,,,,,即,,,综上所述:且;(3)如图3所示,,,理由如下:和是等边三角形,,,,,,在和中,,,,,,.【点睛】此题是三角形综合题,主要考查了等腰三角形的性质,等腰直角三角形的性质,等边三角形的性质,三角形的内角和定理,三角形外角的性质,判断出是解本题的关键.28.(2023春·广东梅州·七年级校考期末)【初步感知】(1)如图1,已知为等边三角形,点D为边上一动点(点D不与点B,点C重合).以为边向右侧作等边,连接.求证:;
【类比探究】(2)如图2,若点D在边的延长线上,随着动点D的运动位置不同,猜想并证明:
①与的位置关系为:;②线段、、之间的数量关系为:;【拓展应用】(3)如图3,在等边中,,点P是边上一定点且,若点D为射线上动点,以为边向右侧作等边,连接、.请问:是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.
【答案】(1)见解析(2)平行(3)有最小值,5【分析】(1)由和是等边三角形,推出,,,又因为,则,即,从而利用“”证明;(2)①由(1)得,得出,,,则;②因为,,所以;(3)在上取一点,使得,连接,可证,,求得,得出是等边三角形,则,即点E在角平分线上运动,在射线上截取,当点E与点C重合时,,进而解答此题.【详解】(1)证明:∵和是等边三角形,∴,,,∵,∴即在和中,,∴;(2)平行,,理由如下:由(1)得,∴,,∴,∴,∵,,∴;(3)有最小值,理由如下:如图,在射线上取一点,使得,连接,
∵和是等边三角形,∴,,∴,∴,由三角形内角和为,可知:,,∴,又∵,∴,∵,∴,在和中,,,∴,,∵,∴,∴是等边三角形,∴,,即点E在的角平分线上运动,在射线上截取,连接,在和中,,,∴,则,由三角形三边关系可知,,即当点E与点C重合,时,有最小值,∵,∴,∴最小值为5.
【点睛】本题考查三角形综合,全等三角形的判定,正确添加辅助线、掌握相关图形的性质定理是解题的关键.29.(2023秋·河北保定·八年级统考期末)在中,,点是上一点,将沿翻折后得到,边交射线于点.
(1)如图1,当时,求证:.(2)若,.①如图2,当时,求的值.②是否存在这样的的值,使得中有两个角相等.若存在,求的值;若不存在,请说明理由.【答案】(1)证明见解析(2)①;②存在,22.5或45【分析】(1)由同角的余角相等可得,由折叠的性质可得,从而得到,最后根据平行线的判定即可得证;(2)①根据三角形内角和定理分别求出,,根据折叠的性质进行计算即可;②分三种情况:当时;当时;当,分别进行计算即可.【详解】(1)证明:∵,,∴,,∴,由翻折可知,,∴,∴;(2)解:①∵,,∴,,∵,,∴,∵,∴,由翻折可知,;②∵,,当时,即,解得,即的值为22.5,当时,,解得,∵,不合题意,故舍去;当,,解得,综上可知,存在这样的的值,使得中有两个角相等,的值为22.5或45.【点睛】本题主要考查的是折叠的性质、三角形内角和定理、等腰三角形的性质、平行线的判定,熟练掌握折叠的性质、三角形内角和定理、等腰三角形的性质、平行线的判定,是解题的关键.30.(2023春·山东东营·九年级统考期中)已知,为等边三角形,点D在边上.【基本图形】如图1,以为一边作等边三角形,连接.请直接写出之间的关系.【迁移运用】如图2,点F是边上一点,以为一边作等边三角.求证:.【类比探究】如图3,点F是边的延长线上一点,以为一边作等边三角形.试探究线段三条线段之间存在怎样的数量关系,请写出你的结论并说明理由.【答案】基本图形:;迁移运用:证明见解析;类比探究:,理由见解析【分析】基本图形:只需要证明得到,再由即可解答;迁移运用:过点作,交于点,然后证明得到,即可推出;类比探究:过点作,交于点,然后证明,得到,再由,即可得到.【详解】解:基本图形:∵是等边三角形,等边三角形,∴,∴,在与中,∴,∴∴,即;迁移运用:证明:过点作,交于点,∵是等边三角形,∴,∵,∴,,又∵,∴为等边三角形,∴,∵为等边三角形,∴,,∵,,∴,在与中,∴,∴,∴;类比探究:解:,理由如下:过点作,交于点,∵是等边三角形,∴,∵,∴,,又∵,∴为等边三角形,∴,∵为等边三角形,∴,,∵,,∴,在与中,∴,∴,∵,∴.【点睛】本题主要考查了全等三角形的性质与判定、等边三角形的性质等知识点,熟知全等三角形的性质与判定条件是解题的关键.31.(2023春·四川达州·七年级统考期末)在中,,是直线上一动点(不与点,重合).
(1)如图1,若,点在边上,交于点,交于点.若,求的度数.(2)如图2,若,点在边上,,交直线于点,交直线于点.①线段,,三者之间的数量关系是___________;②若点在的延长线①中的结论是否成立?若成立,请给出推理过程;若不成立,请画出图形,并直接写出,,三者之间的数量关系.③若点在边上,且,请判断,,三者之间的数量关系,并说明理由.【答案】(1)(2)①;②不成立,见解析,;③,见解析【分析】(1)根据三角形内角和定理以及等腰三角形的性质得出,根据同角的余角相等,可得,即可求解;(2)①,结合条件容易证到,从而有,就可得到;②同①的方法证明即可求解;(3)证明,得出,,根据是的垂直平分线,可得【详解】(1)解:∵,∴,∵,,∴,∴,∵,∴,∵,∴;(2)①证明:如图1,
,即,,,..,.,...②不成立.如图2,.如图,当在延长线上时,,
理由是:即,,,,,,,在和中,(),,.③理由:∵,即,∴.∵,∴,∴.在和中,∵,,,∴,∴,.∵,∴,即.又∵.∴是的垂直平分线.∴.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质等知识,当条件没有改变仅仅是图形的位置发生变化时,常常可以通过借鉴已有的解题经验来解决问题.32.(2023秋·广西桂林·八年级统考期末)理解与探究:构造辅助线是一种探究和解决数学几何问题常用的方法,通过构造适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的结论,达到推导出结论的目的.请根据下列材料解决问题:【问题理解】(1)在数学课上,老师提出如下问题:如图,中,若是边上的中线,且.问:与有怎样的数量关系?
小李同学经过观察和思考,提出的猜想结论,并给出了证明其猜想的方法:如图1.延长中线到点,使,连接,则容易证得.,而
小李同学的上述解决问题的方法当中,其证明的判定依据是:________.(填或或或)【探索发现】(2)如图2,中,,,若是延长线上一点,连接,以为腰作等腰直角三角形,且.小李同学连接后(如图3),发现且.请证明他的结论.【方法迁移】(3)在(2)的条件下,取的中点,连接和,如图4,请判断与有怎样的数量关系和位置关系?并说明理由.
【答案】(1)(2)见解析(3),,理由见解析【分析】(1)利用证明和全等即可;(2)先求出,再利用证明,得出,,进而得出结论;(3)利用可证和,得出,然后利用内角和定理外角定义得到,即可得到最后结论.【详解】(1)证明:在和中,,,故答案为:;(2)证明:,,即,在和中,,,,,,;(3),,理由如下:如图,延长使,交于点,连接,
为的中点,,在和中,,,,,,,,,,,,在和中,,,,,,,,,,在中,,.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,三角形内角和定理,外角定义,直角三角形的判定,平行线的性质,正确作出辅助线构造全等三角形是解答本题的关键.33.(2023春·四川成都·七年级统考期末)(1)阅读理解:如图1,在中,若,.求边上的中线的取值范围.某同学是这样思考的:延长至点,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.在这个过程中小聪同学证三角形全等,用到的全等判定方法是中线的取值范围是.(2)问题解决:如图2,在中,点是边的中点,点在边上,点在边上,若.求证:.(3)问题拓展:如图3,在中,点是边的中点,分别以,为直角边向外作等腰直角三角形和等腰直角三角形,其中,连接,探索与的数量关系和位置关系,并说明理由.
【答案】(1);(2)证明见解答过程;(3),理由见解答过程.【分析】(1)由证明得出,在中,由三角形的三边关系即可得出结论;(2)延长至点,使,连接、,同(1)得:,由全等三角形的性质得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系即可得出结论;(3)延长至,使,连接,由(1)得:,由全等三角形的性质得出,,证出,证明得出,,则.延长交于,证出,得出.即可.【详解】(1)解:延长至点E,使得,连接,是边上的中线,,在和中,,,,在中,由三角形的三边关系得:,,即,,,;故答案为:;;(2)证明:延长至点,使,连接、,如图2所示:同(1)得:,,,,,在中,由三角形的三边关系得:,;(3)解:,,理由如下:
延长至,使,连接,如图3所示:由(1)得:,,,,,即,,,和是等腰直角三角形,,,,在和中,,,,,.延长交于,,,,,.【点睛】此题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的三边关系、线段垂直平分线的性质、等腰直角三角形的性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.34.(2023春·江苏淮安·七年级校考期末)如图1,在四边形中,、是等腰直角三角形,且,为锐角;
(1)如图2,连接AD、BE相交于点O,求的度数.(2)在图1中,与面积相等吗?请说明理由.(3)如图3,已知,的面积为10.G在边上,的延长线经过中点F.求的长.(4)如图2,若,.则四边形面积最大值为______;【答案】(1)(2)相等,理由见解析(3)4(4)【分析】(1)证明,由对应角相等即可得出;(2)过E作交的延长线于G,过D作于F,证明,则,从而可得与面积相等;(3)过点E作交的延长线于点N,由点F是中点可证明,则,再证明,可得;由与面积相等及等积关系可求得的长;(4)的面积为定值,且与面积相等,则的面积最大时,四边形的面积最大;由于为锐角,过D作于M,则,当点M与点C重合时,最大,从而可求得四边形面积的最大值.【详解】(1)解:∵,∴,即,∵、是等腰直角三角形,且,∴,∴,∴,∵,∴,即,∴;(2)解:面积相等,理由如下:过E作交的延长线于G,过D作于F,如图,∴∵,∴,∵,∴,∵,∴,∴,∵,∴,即与面积相等;
(3)解:过点E作交的延长线于点N,如图,则,;∵点F是中点,∴,∴,∴,∵,∴;∵,,∴,∵,∴,∴;∵,∴,∴,∴;∵与面积相等∴,即,∴;
(4)解:∵,,∴,即的面积为定值,由(2)知,与面积相等,∴当的面积最大时,四边形的面积最大;过D作于M,如图,∴,当点M与点C重合时,最大,此时,而这时,∴四边形面积的最大值为.故答案为:.
【点睛】本题是全等三角形的综合,考查了全等三角形的判定与性质,等腰三角形的性质,互余关系,四边形内角和为等知识,其中全等三角形的判定与性质的应用是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅谈我国精密仪器与装备的现状和发展
- 肠道微生态行业发展趋势
- 石河子大学《医药数理统计》2022-2023学年第一学期期末试卷
- 石河子大学《试验设计与数据分析》2023-2024学年第一学期期末试卷
- 石河子大学《解析几何》2021-2022学年第一学期期末试卷
- 石河子大学《健康评估》2022-2023学年第一学期期末试卷
- 石河子大学《阿拉伯国家历史与文化常识》2023-2024学年第一学期期末试卷
- 沈阳理工大学《室外空间设计方法》2022-2023学年第一学期期末试卷
- 沈阳理工大学《矩阵分析》2021-2022学年第一学期期末试卷
- 父亲的病阅读题
- 珠宝销货登记表Excel模板
- 深基坑开挖施工风险源辨识与评价及应对措施
- 唯美手绘风花艺插花基础培训PPT模板课件
- 《现代汉语语法》PPT课件(完整版)
- 5G智慧农业建设方案
- 航海学天文定位第四篇天文航海第1、2章
- 浙江大学学生社团手册(08)
- 水利水电工程专业毕业设计(共98页)
- 公司内部审批权限一览表
- 人教版统编高中语文“文学阅读与写作”学习任务群编写简介
- 六年级语文命题比赛一等奖作品
评论
0/150
提交评论