2023-2024学年贵州省遵义市第二教育集团数学高一上期末达标检测试题含解析_第1页
2023-2024学年贵州省遵义市第二教育集团数学高一上期末达标检测试题含解析_第2页
2023-2024学年贵州省遵义市第二教育集团数学高一上期末达标检测试题含解析_第3页
2023-2024学年贵州省遵义市第二教育集团数学高一上期末达标检测试题含解析_第4页
2023-2024学年贵州省遵义市第二教育集团数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵州省遵义市第二教育集团数学高一上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值为()A. B.1C. D.22.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},则M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}3.已知向量,,若与共线,则等于()A. B.C. D.4.已知实数,且,则的最小值是()A.6 B.C. D.5.设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.6.下列函数中,在上单调递增的是()A. B.C. D.7.已知,若,则x的取值范围为()A. B.C. D.8.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.49.已知函数,若(其中.),则的最小值为()A. B.C.2 D.410.中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是℃,环境温度是℃,则经过分钟后物体的温度℃将满足,其中是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,℃的水应大约冷却()分钟冲泡该绿茶(参考数据:,)A.3 B.3.6C.4 D.4.8二、填空题:本大题共6小题,每小题5分,共30分。11.函数零点的个数为______.12.计算的值为__________13.已知集合,.若,则___________.14.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)15.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)16.在三棱锥中,,,,则三棱锥的外接球的表面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,且当时,(1)求实数的值;(2)求函数在上的解析式;(3)若对任意实数恒成立,求实数的取值范围18.已知函数.(1)若在上单调递增,求的取值范围;(2)讨论函数的零点个数.19.如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)证明:平面平面.20.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离21.已知(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据正切的差角公式逆用可得答案【详解】,故选:B2、B【解析】先化简集合N,再进行交集运算即得结果.【详解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故选:B.3、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.4、B【解析】构造,利用均值不等式即得解【详解】,当且仅当,即,时等号成立故选:B【点睛】本题考查了均值不等式在最值问题中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题5、B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=lnx单调递增,所以,故选B6、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、、在上均为减函数,函数在上为增函数.故选:B.7、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.8、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.9、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B10、B【解析】根据题意求出k的值,再将θ=80℃,=100℃,=20℃代入即可求得t的值.【详解】由题可知:,冲泡绿茶时水温为80℃,故.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.12、【解析】.13、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:14、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.15、①④【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键16、【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)由题利用即可求解;(2)当x<0,则﹣x>0,根据函数为奇函数f(﹣x)=﹣f(x)及当x>0时,,可得函数在x<0时的解析式,进而得到函数在R上的解析式;(3)根据奇函数在对称区间上单调性相同,结合指数函数的图象和性质,可分析出函数的单调性,进而将原不等式变形,解不等式可得实数的取值范围.【详解】解:(1)函数是定义在上的奇函数,解得(2)由(1)当,又是奇函数,(3)由及函数是定义在上的奇函数得由的图像知为R上的增函数,,【点睛】本题考查的知识点是函数奇偶性与单调性的综合,其中熟练掌握函数奇偶性的性质,及在对称区间上单调性的关系是解答本题的关键.18、(1)(2)当时,有一个零点;当时,且当时,有两个零点,当时,有一个零点【解析】(1)由、都是单调递增函数可得的单调性,利用单调性可得答案;(2)时有一个零点;当时,利用单独单调性求得,分和讨论可得答案.【小问1详解】当时,单调递增,当时,单调递增,若在上单调递增,只需,.【小问2详解】当时,,此时,即,有一个零点;当时,,此时在上单调递增,,若,即,此时有一个零点;若,即,此时无零点,故当时,有两个零点,当时,有一个零点19、(1)见解析;(2)见解析【解析】(1)连结,交点,连,推出//1,即可证明平面;(2)取的中点,连结,证明四边形是平行四边形,证明,得到平面,然后证明平面平面试题解析:(1)连结,交点,连,则是的中点,因为是的中点,故//.因为平面,平面.所以//平面.(2)取的中点,连结,因为是的中点,故//且.显然//,且,所以//且则四边形是平行四边形.所以//.因为,所以又,所以直线平面.因为//,所以直线平面.因为平面,所以平面平面20、(1)见解析;(2)【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离【详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形,∴DN⊥CM,因为平面MNFE⊥平面ABCD,FN⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因为CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论