2023-2024学年杭州市高级中学 高一上数学期末学业水平测试模拟试题含解析_第1页
2023-2024学年杭州市高级中学 高一上数学期末学业水平测试模拟试题含解析_第2页
2023-2024学年杭州市高级中学 高一上数学期末学业水平测试模拟试题含解析_第3页
2023-2024学年杭州市高级中学 高一上数学期末学业水平测试模拟试题含解析_第4页
2023-2024学年杭州市高级中学 高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年杭州市高级中学高一上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确2.已知,是不共线的向量,,,,若,,三点共线,则实数的值为()A. B.10C. D.53.对于实数x,“0<x<1”是“x<2”的()条件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要4.已知函数,则A.1 B.C.2 D.05.已知函数,则的值是()A. B.C. D.6.在平行四边形ABCD中,E为AB中点,BD交CE于F,则=()A. B.C. D.7.已知,若,则的取值范围是()A. B.C. D.8.已知函数的值域为,则实数a的取值范围是()A. B.C. D.9.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,2510.已知函数,若函数恰有8个不同零点,则实数a的取值范围是()A. B.C. D.11.下列等式中,正确的是()A. B.C. D.12.下列函数中,既是偶函数又在上是单调递增的函数是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若,,.,则a,b,c的大小关系用“”表示为________________.14.已知定义域为R的函数,满足,则实数a的取值范围是______15.已知角的终边过点(1,-2),则________16.若,则_________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知分别是定义在上的奇函数和偶函数,且(1)求的解析式;(2)若时,对一切,使得恒成立,求实数的取值范围.18.已知集合,(1)当时,求;(2)若,求的取值范围19.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t的取值范围20.已知二次函数满足,且的最小值是求的解析式;若关于x的方程在区间上有唯一实数根,求实数m的取值范围;函数,对任意,都有恒成立,求实数t的取值范围21.对于函数,若在定义域内存在实数,满足,则称“局部中心函数”.(1)已知二次函数(),试判断是否为“局部中心函数”,并说明理由;(2)若是定义域为上的“局部中心函数”,求实数的取值范围.22.直线过点,且倾斜角为.(1)求直线的方程;(2)求直线与坐标轴所围成的三角形面积.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.2、A【解析】由向量的线性运算,求得,根据三点共线,得到,列出方程组,即可求解.【详解】由,,可得,因为,,三点共线,所以,所以存在唯一的实数,使得,即,所以,解得,.故选:A.3、D【解析】从充分性和必要性的定义,结合题意,即可容易判断.【详解】若,则一定有,故充分性满足;若,不一定有,例如,满足,但不满足,故必要性不满足;故“0<x<1”是“x<2”的充分不必要条件.故选:.4、C【解析】根据题意可得,由对数的运算,即可求解,得到答案【详解】由题意,函数,故选C【点睛】本题主要考查了函数值的求法,函数性质等基础知识的应用,其中熟记对数的运算性质是解答的关键,着重考查了考查化归与转化思想、函数与方程思想,属于基础题,5、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D6、A【解析】利用向量加法法则把转化为,再利用数量关系把化为,从而可表示结果.【详解】解:如图,∵平行四边形ABCD中,E为AB中点,∴,∴DF,∴,故选A【点睛】此题考查了向量加减法则,平面向量基本定理,难度不大7、B【解析】由以及,可得,即得,再根据基本不等式即可求的取值范围.【详解】解:,不妨设,若,由,得:,即与矛盾;同理,也可导出矛盾,故,,即,而,即,即,当且仅当,即时等号成立,又,故,即的取值范围是.故选:B.8、B【解析】令,要使已知函数的值域为,需值域包含,对系数分类讨论,结合二次函数图像,即可求解.【详解】解:∵函数的值域为,令,当时,,不合题意;当时,,此时,满足题意;当时,要使函数的值域为,则函数的值域包含,,解得,综上,实数的取值范围是.故选:B【点睛】关键点点睛:要使函数的值域为,需要作为真数的函数值域必须包含,对系数分类讨论,结合二次函数图像,即可求解.9、A【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A10、A【解析】利用十字相乘法进行因式分解,然后利用换元法,作出的图象,利用数形结合判断根的个数即可.【详解】由,得,解得或,作出的图象如图,则若,则或,设,由得,此时或,当时,,有两根,当时,,有一个根,则必须有,有个根,设,由得,若,由,得或,有一个根,有两个根,此时有个根,不满足题意;若,由,得,有一个根,不满足条件.若,由,得,有一个根,不满足条件;若,由,得或或,当,有一个根,当时,有个根,当时,有一个根,此时共有个根,满足题意.所以实数a的取值范围为.故选:A.【点睛】方法点睛:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题第II卷(非选择题11、D【解析】按照指数对数的运算性质依次判断4个选项即可.【详解】对于A,当为奇数时,,当为偶数时,,错误;对于B,,错误;对于C,,错误;对于D,,正确.故选:D.12、B【解析】根据函数奇偶性和单调性之间的关系,即可得到结论.【详解】根据函数奇偶性和单调性,A,(0,+∞)上是单调递减,错误B,偶函数,(0,+∞)上是递增,正确.C,奇函数,错误,D,x>0时,(0,+∞)上是函数递减,错误,故选:B.【点睛】根据函数奇偶性和单调性之间的关系是解决本题的关键二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.14、【解析】先判断函数奇偶性,再判断函数的单调性,从而把条件不等式转化为简单不等式.【详解】由函数定义域为R,且,可知函数为奇函数.,令则,令则即在定义域R上单调递增,又,由此可知,当时,即,函数即为减函数;当时,即,函数即为增函数,故函数在R上的最小值为,可知函数在定义域为R上为增函数.根据以上两个性质,不等式可化为,不等式等价于即解之得或故答案为15、【解析】由三角函数的定义以及诱导公式求解即可.【详解】的终边过点(1,-2),故答案为:16、【解析】先求得,然后求得.【详解】,.故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)综上或【解析】(1)利用奇偶性构建方程组,解之即可;(2)恒成立等价于在恒成立(其中),令,讨论二次项系数,利用三个“二次”的关系布列不等式组即可.试题解析:(1)①,,分别是定义在上的奇函数和偶函数,②,由①②可知(2)当时,,令,即,恒成立,在恒成立.令(ⅰ)当时,(舍);(ⅱ)法一:当时,或或解得.法二:由于,所以或解得.(ⅲ)当时,,解得综上或点睛:研究不等式恒成立或存在型问题,首先要构造函数,然后研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18、(1);(2).【解析】(1)当时,可求出集合,再求出集合,取交集即可得到答案.(2)根据,可得,分别求出集合和集合,集合是集合的子集,即可得到答案.【小问1详解】当时,集合,,即集合,,故.【小问2详解】,集合,集合,.19、(1);(2)或;(3).【解析】利用待定系数法求出二次函数的解析式;求出函数的值域,再由题意得出关于a的不等式,求出解集即可;由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围【详解】解:设,因为,所以;;;;;解得:;;函数,若存在实数a、b使得,则,即,,解得或,即a的取值范围是或;由题意知,若对任意,都有恒成立,即,故有,由,;当时,在上为增函数,,解得,所以;当,即时,在区间上是单调减函数,,解得,所以;当,即时,,若,则,解得;若,则,解得,所以,应取;综上所述,实数t的取值范围是【点睛】本题考查了不等式恒成立问题,也考查了分类讨论思想与转化思想,属于难题20、(1)(2)(3)【解析】(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有不等式成立等价于,分、、和四种情形讨论即可.解析:(1)因,对称轴为,设,由得,所以.(2)由方程得,即直线与函数的图象有且只有一个交点,作出函数在的图象.易得当或时函数图象与直线只有一个交点,所以的取值范围是.(3)由题意知.假设存在实数满足条件,对任意都有成立,即,故有,由.当时,在上为增函数,,所以;当时,,.即,解得,所以.当时,即解得.所以.当时,,即,所以,综上所述,,所以当时,使得对任意都有成立.点睛:(1)求二次函数的解析式,一般用待定系数法,有时也需要根据题设的特点合理假设二次函数的形式(如双根式、顶点式、一般式);(2)不等式对任意的恒成立可以等价转化为恒成立.21、(1)为“局部中心函数”,理由详见解题过程;(2)【解析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”;(2)条件是定义域为上的“局部中心函数”可转化为方程有解,再利用整体思路得出结果.【详解】解:(1)由题意,(),所以,,当时,解得:,由于,所以,所以为“局部中心函数”.(2)因为是定义域为上的“局部中心函数”,所以方程有解,即在上有解,整理得:,令,,故题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论