![2023-2024学年北京市西城13中学高一上数学期末监测试题含解析_第1页](http://file4.renrendoc.com/view10/M03/01/35/wKhkGWVzKO-AQl_wAAGYPbMAo_o244.jpg)
![2023-2024学年北京市西城13中学高一上数学期末监测试题含解析_第2页](http://file4.renrendoc.com/view10/M03/01/35/wKhkGWVzKO-AQl_wAAGYPbMAo_o2442.jpg)
![2023-2024学年北京市西城13中学高一上数学期末监测试题含解析_第3页](http://file4.renrendoc.com/view10/M03/01/35/wKhkGWVzKO-AQl_wAAGYPbMAo_o2443.jpg)
![2023-2024学年北京市西城13中学高一上数学期末监测试题含解析_第4页](http://file4.renrendoc.com/view10/M03/01/35/wKhkGWVzKO-AQl_wAAGYPbMAo_o2444.jpg)
![2023-2024学年北京市西城13中学高一上数学期末监测试题含解析_第5页](http://file4.renrendoc.com/view10/M03/01/35/wKhkGWVzKO-AQl_wAAGYPbMAo_o2445.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年北京市西城13中学高一上数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.定义运算:,则函数的图像是()A. B.C. D.2.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.3.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.4.若,则下列不等式成立的是().A. B.C. D.5.函数的零点个数为()A.2 B.3C.4 D.56.已知直线与直线平行,则的值为A.1 B.3C.-1或3 D.-1或17.已知函数,若图象过点,则的值为()A. B.2C. D.8.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.109.已知sin2α>0,且cosα<0,则角α的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知函数,则在上的最大值与最小值之和为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设奇函数对任意的,,有,且,则的解集___________.12.在半径为5的圆中,的圆心角所对的扇形的面积为_______.13.甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.14.已知,则满足条件的角的集合为_________.15.在平面四边形中,,若,则__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知为第四象限角,且,求下列各式的值(1);(2)17.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.18.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值19.已知().(1)当时,求关于的不等式的解集;(2)若f(x)是偶函数,求k的值;(3)在(2)条件下,设,若函数与的图象有公共点,求实数b的取值范围20.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间21.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,)
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】先求解析式,再判断即可详解】由题意故选:A【点睛】本题考查函数图像的识别,考查指数函数性质,是基础题2、B【解析】构造函数,通过表格判断,判断零点所在区间,即得结果.【详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.3、C【解析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C4、B【解析】∵a>b>c,∴a﹣c>b﹣c>0,∴故选B5、B【解析】先用诱导公式得化简,再画出图象,利用数形结合即可【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3故选:B.6、A【解析】因为两条直线平行,所以:解得m=1故选A.点睛:本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1),需检验不重合;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.7、B【解析】分析】将代入求得,进而可得的值.【详解】因为函数的图象过点,所以,则,所以,,故选:B.8、A【解析】由题意可知kAB==-2,所以m=-8.故选A9、C【解析】根据二倍角公式可得到,又因为cosα<0,故得到进而得到角所在象限.【详解】已知sin2α>0,,又因为cosα<0,故得到,进而得到角是第三象限角.故答案为C.【点睛】本题考查象限角的定义,熟练掌握三角函数在各个象限中的符号是解决问题的关键,属于基础题10、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性12、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.13、1800【解析】由题共有产品4800名,抽取样本为80,则抽取的概率为;,再由50件产品由甲设备生产,则乙设备生产有30件,则乙设备在总体中有;考点:抽样方法的随机性.14、【解析】根据特殊角的三角函数值与正弦函数的性质计算可得;【详解】解:因为,所以或,解得或,因为,所以或,即;故答案为:15、##1.5【解析】设,在中,可知,在中,可得,由正弦定理,可得答案.【详解】设,在中,,,,在中,,,,,由正弦定理得:,得,.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)先根据同角三角函数的关系求解可得,再根据同角三角函数的关系化简即可(2)先根据,再根据求解即可【小问1详解】∵是第四象限角,∴,,又∵,∴,故∴(负值舍去),,∴故【小问2详解】∵,∴17、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取得最大值的z的集合.【详解】解:容易知道,这两个函数都有最大值、最小值.(1)使函数,取得最大值的x的集合,就是使函数,取得最大值的x的集合;使函数,取得最小值的x的集合,就是使函数,取得最小值的x的集合.函数,的最大值是;最小值是.(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合.由,得.所以,使函数,取得最大值3的x的集合是.同理,使函数,取得最小值-3的x的集合是.函数,的最大值是3,最小值是-3.【点睛】本题主要考查三角函数的最值的求法,意在考查学生对这些知识的理解掌握水平.18、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用19、(1)(2)1(3)【解析】(1)根据条件列指数不等式,直接求解即可;(2)利用偶函数定义列直接求解即可;(3)根据题意列方程,令,得到方程,构造,结合二次函数性质讨论方程的根即可.【详解】(1)因为所以原不等式的解集为(2)因为的定义域为且为偶函数,所以即所以.经检验满足题意.(3)有(2)可得因为函数与的图象有公共点所以方程有根即有根令且()方程可化为(*)令恒过定点①当时,即时,(*)在上有根(舍);②当时,即时,(*)在上有根因为,则(*)方程在上必有一根故成立;③当时,(*)在上有根则有④当时,(*)在上有根则有综上可得:的取值范围为【点睛】本题重点考查了函数方程的求解及二次函数根的分布,用到了换元和分类讨论的思想,考查了学生的计算能力,属于难题.20、(1),;(2);(3)﹒【解析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为21、(1)函数模型较为合适,且该函数模型的解析式为;(2)月份.【解析】(1)根据两个函数模型增长的快慢可知函数模型较为合适,将点、代入函数解析式,求出、的值,即可得出函数模型的解析式;(2)分析得出,解此不等式即可得出结论.【详解】(1)由题设可知,两个函数、)在上均为增函数,随着的增大,函数的值增加得越来越快,而函数的值增加得越来越慢,由于风眼莲在湖中的蔓延速度越来越快,故而函数模型满足要求.由题意可得,解得,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色低碳分布式光储充一体化综合利用项目可行性研究报告写作模板-申批备案
- 2025-2030全球草酸镥水合物行业调研及趋势分析报告
- 2025年全球及中国游戏插画行业头部企业市场占有率及排名调研报告
- 2025-2030全球单通道凝血分析仪行业调研及趋势分析报告
- 2025-2030全球EPROM 存储器行业调研及趋势分析报告
- 2025年全球及中国3,4,5-三甲氧基甲苯行业头部企业市场占有率及排名调研报告
- 2025年全球及中国代谢物定制合成服务行业头部企业市场占有率及排名调研报告
- 2025-2030全球低扭矩滚子轴承行业调研及趋势分析报告
- 2025年全球及中国汽车差速器锥齿轮行业头部企业市场占有率及排名调研报告
- 2025-2030全球高压电动车轴行业调研及趋势分析报告
- 2024年云南省公务员考试【申论县乡卷、行测、事业单位招聘】3套 真题及答案
- 湖南省长沙市长郡教育集团2024-2025学年七年级上学期期末考试英语试题(含答案)
- 2024上海市招聘社区工作者考试题及参考答案
- 2024-2025学年人教版三年级(上)英语寒假作业(九)
- 《招标投标法》考试题库200题(含答案)
- 立春气象与健康
- 河南退役军人专升本计算机真题答案
- 室内空气治理技术培训
- Q∕SY 06342-2018 油气管道伴行道路设计规范
- 物业管理企业用工风险与防范对策
- 拜耳法氧化铝生产工艺流程框图
评论
0/150
提交评论