2023-2024学年安徽省宣城市郎溪中学高一上数学期末学业质量监测模拟试题含解析_第1页
2023-2024学年安徽省宣城市郎溪中学高一上数学期末学业质量监测模拟试题含解析_第2页
2023-2024学年安徽省宣城市郎溪中学高一上数学期末学业质量监测模拟试题含解析_第3页
2023-2024学年安徽省宣城市郎溪中学高一上数学期末学业质量监测模拟试题含解析_第4页
2023-2024学年安徽省宣城市郎溪中学高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省宣城市郎溪中学高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.下列六个关系式:⑴其中正确的个数为()A.6个 B.5个C.4个 D.少于4个3.每天,随着清晨第一缕阳光升起,北京天安门广场都会举行庄严肃穆的升旗仪式,每天升国旗的时间随着日出时间的改变而改变,下表给出了2020年1月至12月,每个月第一天北京天安门广场举行升旗礼的时间:1月2月3月4月5月6月7月8月9月10月11月12月7:367:236:485:595:154:484:495:125:416:106:427:16若据此以月份(x)为横轴、时间(y)为纵轴,画出散点图,并用曲线去拟合这些数据,则适合模拟的函数模型是()A. B.且a≠1)C. D.且a≠1)4.设,,则()A. B.C. D.5.已知,,且,,则的值是A. B.C. D.6.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则=A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}7.函数,值域是()A. B.C. D.8.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.9.已知函数,若函数在上有两个零点,则的取值范围是()A. B.C. D.,10.过点且平行于直线的直线方程为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如果实数满足条件,那么的最大值为__________12.已知函数,则____13.设x、y满足约束条件,则的最小值是________.14.对,不等式恒成立,则m的取值范围是___________;若在上有解,则m的取值范围是___________.15.已知,则__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知角的顶点在坐标原点,始边与x轴正半轴重合,终边经过点.(1)求,;(2)求的值.17.已知函数是奇函数(1)求a的值,并根据定义证明函数在上单调递增;(2)求的值域18.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值19.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值20.设为奇函数,为常数.(1)求的值(2)若对于上的每一个的值,不等式恒成立,求实数的取值范围.21.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.2、C【解析】根据集合自身是自身的子集,可知①正确;根据集合无序性可知②正确;根据元素与集合只有属于与不属于关系可知③⑤不正确;根据元素与集合之间的关系可知④正确;根据空集是任何集合的子集可知⑥正确,即正确的关系式个数为个,故选C.点睛:本题主要考查了:(1)点睛:集合的三要素是:确定性、互异性和无序性,;(2)元素和集合之间是属于关系,子集和集合之间是包含关系;(3)不含任何元素的集合称为空集,空集是任何集合的子集3、C【解析】画出散点图,根据图形即可判断.【详解】画出散点图如下,则根据散点图可知,可用正弦型曲线拟合这些数据,故适合.故选:C.4、D【解析】解出不等式,然后可得答案.【详解】因为,所以故选:D5、B【解析】由,得,所以,,得,,所以,从而有,.故选:B6、C【解析】根据补集的运算得.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误7、A【解析】令,求出g(t)的值域,再根据指数函数单调性求f(x)值域.【详解】令,则,则,故选:A.8、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.9、D【解析】根据时,一定有一个零点,故只需在时有一个零点即可,列出不等式求解即可.【详解】当时,令,即可得,;故在时,一定有一个零点;要满足题意,显然,令,解得只需,解得.故选:D【点睛】本题考查由函数的零点个数求参数范围,涉及对数不等式的求解,属综合基础题.10、A【解析】解析:设与直线平行直线方程为,把点代入可得,所以所求直线的方程为,故选A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题12、16、【解析】令,则,所以,故填.13、-6【解析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【点睛】本题考查简单线性规划问题,属中档题14、①.②.【解析】(1)根据一元二次函数的图象,考虑开口方向和判别式,即可得到答案;(2)利用参变分离,将问题转化为不等式在上有解;【详解】(1)关于x的不等式函数对于任意实数x恒成立,则,解得m的取值范围是.(2)若在上有解,则在上有解,易知当时,当时,此时记,则,,在上单调递减,故,综上可知,,故m的取值范围是.故答案为:;15、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:3三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),;(2).【解析】(1)根据三角函数的定义,即可求出结果;(2)利用诱导公式对原式进行化简,代入,的值,即可求出结果.【详解】解:(1)因为角的终边经过点,由三角函数的定义知,(2)诱导公式,得.17、(1),证明见解析;(2).【解析】(1)由列方程求参数a,令判断的大小关系即可证结论;(2)根据指数复合函数值域的求法,求的值域.【小问1详解】由题设,,则,∴,即,令,则,又单调递增,∴,,,即.∴在上单调递增,得证.小问2详解】由,则,∴.18、(1)函数在区间是递增函数;证明见解析;(2)或【解析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1)可得在区间递增函数,①当时,是减函数,故当取得最小值时,(且)取得最大值2,在区间的最小值为,故的最大值是,∴②当时,是增函数,故当取得最大值时,(且)取得最大值2,在区间的最大值为,故的最大值是,∴或19、(1);(2)【解析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴20、(1);(2).【解析】(1)根据函数为奇函数求参数值,注意验证是否符合题设.(2)将问题转化为在上恒成立,根据解析式判断的区间单调性,即可求的范围.小问1详解】由题设,,∴,即,故,当时,,不成立,舍去;当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论