2023-2024学年安徽省黄山市屯溪一中高一上数学期末达标检测模拟试题含解析_第1页
2023-2024学年安徽省黄山市屯溪一中高一上数学期末达标检测模拟试题含解析_第2页
2023-2024学年安徽省黄山市屯溪一中高一上数学期末达标检测模拟试题含解析_第3页
2023-2024学年安徽省黄山市屯溪一中高一上数学期末达标检测模拟试题含解析_第4页
2023-2024学年安徽省黄山市屯溪一中高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省黄山市屯溪一中高一上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.2.为庆祝深圳特区成立40周年,2020年10月11日深圳无人机精英赛总决赛在光明区举行,全市共39支队伍参加,下图反映了某学校代表队制作的无人机载重飞行从某时刻开始15分钟内的速度(单位:米/分)与时间x(单位:分)的关系.若定义"速度差函数"u(x)为无人机在时间段为[0,x]内的最大速度与最小速度的差,则u(x)的图象为()A B.C. D.3.下列函数中,值域为的偶函数是A. B.C. D.4.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或5.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.6.已知,,若对任意,或,则的取值范围是A. B.C. D.7.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.8.已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=logb(x-a)的图象可能是()A. B.C. D.9.已知向量,满足,,且与夹角为,则()A. B.C. D.10.已知函数,则下列关于函数的说法中,正确的是()A.将图象向左平移个单位可得到的图象B.将图象向右平移个单位,所得图象关于对称C.是函数的一条对称轴D.最小正周期为二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知的图象的对称轴为_________________12.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)13.若,,,则的最小值为___________.14.已知函数满足,则________.15.若,记,,,则P、Q、R的大小关系为______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数.(1)判断函数的奇偶性,并进行证明;(2)若实数满足,求实数的取值范围.17.已知角终边经过点,求18.已知函数的定义域为.(1)求;(2)设集合,若,求实数的取值范围.19.已知直线l的方程为2x-y+1=0(1)求过点A3,2,且与直线l垂直的直线l(2)求与直线l平行,且到点P3,0的距离为5的直线l20.如图,在边长为2的正方形ABCD中,E,F分别是边AB,BC的中点,用向量的方法(用其他方法解答正确同等给分)证明:21.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据古典概型概率的计算公式直接计算.【详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.2、D【解析】根据,“速度差函数”的定义,分,、,、,、,四种情况,分别求得函数的解析式,从而得到函数的图象【详解】解:由题意可得,当,时,翼人做匀加速运动,,“速度差函数”当,时,翼人做匀减速运动,速度从160开始下降,一直降到80,当,时,翼人做匀减速运动,从80开始下降,,当,时,翼人做匀加速运动,“速度差函数”,结合所给的图象,故选:3、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D4、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A5、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键6、C【解析】先判断函数g(x)的取值范围,然后根据或成立求得m的取值范围.【详解】∵g(x)=﹣2,当x<时,恒成立,当x≥时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立,即m(x﹣2m)(x+m+3)<0在x≥时恒成立,则二次函数y=m(x﹣2m)(x+m+3)图象开口只能向下,且与x轴交点都在(,0)的左侧,∴,即,解得<m<0,∴实数m的取值范围是:(,0)故选C【点睛】本题主要考查指数函数和二次函数的图象和性质,根据条件确定f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立是解决本题的关键,综合性较强,难度较大7、B【解析】所以,所以。故选B。8、C【解析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C.9、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D10、C【解析】根据余弦型函数的图象变换性质,结合余弦型函数的对称性和周期性逐一判断即可.【详解】A:图象向左平移个单位可得到函数的解析式为:,故本选项说法不正确;B:图象向右平移个单位,所得函数的解析式为;,因为,所以该函数是偶函数,图象不关于原点对称,故本选项说法不正确;C:因为,所以是函数的一条对称轴,因此本选项说法正确;D:函数的最小正周期为:,所以本选项说法不正确,故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:12、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.13、3【解析】利用基本不等式常值代换即可求解.【详解】因为,,,所以,当且仅当,即时,等号成立,所以的最小值为3,故答案为:314、6【解析】由得出方程组,求出函数解析式即可.【详解】因为函数满足,所以,解之得,所以,所以.【点睛】本题主要考查求函数的值,属于基础题型.15、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)为奇函数,证明见解析(2)【解析】(1)由奇偶性定义直接判断即可;(2)化简函数得到,由此可知在上单调递增;利用奇偶性可化简所求不等式为,利用单调性解不等式即可.【小问1详解】为奇函数,证明如下:定义域,,为定义在上的奇函数.【小问2详解】,又在上单调递增,在上单调递增;由(1)知:,,,,即,,解得:,即实数的取值范围为.17、7【解析】要求值的三角函数式可化简为,再利用任意角三角函数的定义求出,代入即得所求【详解】因为角终边经过点,则又18、(1)A(2)【解析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可;(2)分类讨论和两种情况确定实数的取值范围即可.【详解】(1)由,解得,由,解得,∴.(2)当时,函数在上单调递增.∵,∴,即.于是.要使,则满足,解得.∴.当时,函数在上单调递减.∵,∴,即.于是要使,则满足,解得与矛盾.∴.综上,实数的取值范围为.【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力.19、(1)(2)或【解析】1直接利用直线垂直的充要条件求出直线的方程;2设所求直线方程为2x-y+c=0,由于点P(3,0)到该直线的距离为5,可得|6+c|22+解析:(1)∵直线l的斜率为2,∴所求直线斜率为-1又∵过点A(3,2),∴所求直线方程为即x+2y-7=0(2)依题意设所求直线方程为2x-y+c=0,∵点P(3,0)到该直线的距离为∴|6+c|22+(-1)2所以,所求直线方程为2x-y-1=0或2x-y-11=020、证明见解析【解析】建立直角坐标系,先写出,再按照数量积的坐标运算证明即可.【详解】如图,以A原点,AB为x轴,AD为y轴建立直角坐标系,则,,故.21、(1)见详解;(2)见详解;(3).【解析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【详解】(1)证明:因为为的中点,为的中点,所以是的中位线,.又,,所以.(2)证明:因为为正三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论