2023-2024学年安徽省合肥市庐阳区第六中学数学高一上期末达标检测模拟试题含解析_第1页
2023-2024学年安徽省合肥市庐阳区第六中学数学高一上期末达标检测模拟试题含解析_第2页
2023-2024学年安徽省合肥市庐阳区第六中学数学高一上期末达标检测模拟试题含解析_第3页
2023-2024学年安徽省合肥市庐阳区第六中学数学高一上期末达标检测模拟试题含解析_第4页
2023-2024学年安徽省合肥市庐阳区第六中学数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省合肥市庐阳区第六中学数学高一上期末达标检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.已知集合,集合,则等于()A. B.C. D.2.已知,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知函数是定义域为的奇函数,且,当时,,则()A. B.C. D.4.已知,则()A. B.C.2 D.5.函数的图像的一个对称中心是A. B.C. D.6.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数7.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.8.“幸福感指数”是指某个人主观地评价自己对目前生活状态的满意程度的指标.常用区间内的一个数来表示,该数越接近表示满意度越高.甲、乙两位同学分别随机抽取位本地市民,调查他们的幸福感指数,甲得到位市民的幸福感指数分别为,,,,,,,,,,乙得到位市民的幸福感指数的平均数为,方差为,则这位市民幸福感指数的方差为()A. B.C. D.9.已知函数,下面关于说法正确的个数是()①的图象关于原点对称②的图象关于y轴对称③的值域为④在定义域上单调递减A.1 B.2C.3 D.410.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-211.已知是定义域为的单调函数,且对任意实数,都有,则的值为()A.0 B.C. D.112.若两条平行直线与之间的距离是,则m+n=A.0 B.1C.-2 D.-1二、填空题(本大题共4小题,共20分)13.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象14.已知函数,若对恒成立,则实数的取值范围是___________.15.若,则_____16.函数的单调递增区间为___________.三、解答题(本大题共6小题,共70分)17.在中,设角的对边分别为,已知.(1)求角的大小;(2)若,求周长的取值范围.18.已知集合且(1)若,求的值;(2)若,求实数组成的集合19.已知集合A={x|﹣2≤x≤5},B={x|m﹣6≤x≤2m﹣1}(1)当m=﹣1时,求A∩B;(2)若集合B是集合A的子集,求实数m的取值范围20.已知集合,关于的不等式的解集为(1)求;(2)设,若集合中只有两个元素属于集合,求的取值范围21.已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.22.已知函数的部分图像如图所示(1)求函数f(x)的解析式,并写出其单调递增区间;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,若,且a、b是方程的两个实数根,试求△ABC的周长及其外接圆的面积

参考答案一、选择题(本大题共12小题,共60分)1、A【解析】根据题意先解出集合B,进而求出交集即可.详解】由题意,,则.故选:A.2、C【解析】利用不等式的性质和充要条件的判定条件进行判定即可.【详解】因为,,所以成立;又,,所以成立;所以当时,“”是“”的充分必要条件.故选:C.3、A【解析】由奇偶性结合得出,再结合解析式得出答案.【详解】由函数是定义域为的奇函数,且,,而,则故选:A4、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B5、C【解析】令,得,所以函数的图像的对称中心是,然后赋值即可【详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【点睛】本题主要考查正切函数的对称性,属基础题6、C【解析】根据奇偶性的定义判断即可;【详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C7、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.8、C【解析】设乙得到位市民的幸福感指数为,甲得到位市民的幸福感指数为,求出,,由甲的方差可得的值,再求出的值,由方差公式即可求解.【详解】设乙得到位市民的幸福感指数为,则,甲得到位市民的幸福感指数为,可得,,所以这位市民的幸福感指数之和为,平均数为,由方差的定义,乙所得数据的方差:,由于,解得:.因为甲得到位市民的幸福感指数为,,,,,,,,,,所以,所以这位市民的幸福感指数的方差为:,故选:C.9、B【解析】根据函数的奇偶性定义判断为奇函数可得对称性,化简解析式,根据指数函数的性质可得单调性和值域.【详解】因为的定义域为,,即函数为奇函数,所以函数的图象关于原点对称,即①正确,②不正确;因为,由于单调递减,所以单调递增,故④错误;因为,所以,,即函数的值域为,故③正确,即正确的个数为2个,故选:B.【点睛】关键点点睛:理解函数的奇偶性和常见函数单调性简单的判断方式.10、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键.11、B【解析】令,可以求得,即可求出解析式,进而求出函数值.【详解】根据题意,令,为常数,可得,且,所以时有,将代入,等式成立,所以是的一个解,因为随的增大而增大,所以可以判断为增函数,所以可知函数有唯一解,又因为,所以,即,所以.故选:B.【点睛】本题主要考查函数单调性和函数的表示方法,属于中档题.12、C【解析】根据直线平行得到,根据两直线的距离公式得到,得到答案.【详解】由,得,解得,即直线,两直线之间的距离为,解得(舍去),所以故答案选C.【点睛】本题考查了直线平行,两平行直线之间的距离,意在考查学生的计算能力.二、填空题(本大题共4小题,共20分)13、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;14、【解析】需要满足两个不等式和对都成立.【详解】和对都成立,令,得在上恒成立,当时,只需即可,解得;当时,只需即可,解得(舍);综上故答案为:15、【解析】首先求函数,再求的值.【详解】设,则所以,即,,.故答案为:16、【解析】根据复合函数“同增异减”的原则即可求得答案.【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)【解析】(1)由三角函数的平方关系及余弦定理即可得出(2)利用正弦定理、两角和差的正弦公式、三角函数的单调性转化为三角函数求值域即可得出.【详解】(1)由题意知,即,由正弦定理得由余弦定理得,又.(2),则的周长.,,周长的取值范围是.【点睛】本题主要考查了三角函数的平方关系,正余弦定理,两角和差的正弦公式,三角函数的单调性,属于中档题.18、(1),(2)【解析】(1)由得,,求得,再求得,从而得集合,最后可得值;(2)求得集合,由分类讨论可得值【小问1详解】因,,且,,所以,,所以,解得,所以.所以,所以,解得【小问2详解】若,可得,因为,所以.当,则;当,则;当,综上,可得实数a组成的集合为19、(1)A∩B=∅;(2)(﹣∞,﹣5)【解析】(1)由m=﹣1求得B,再利用交集运算求解.(2)根据B⊆A,分B=∅和B≠∅两种求解讨论求解.【详解】(1)m=﹣1时,B={x|﹣7≤x≤﹣3};∴A∩B=∅;(2)∵B⊆A;∴①B=∅时,m﹣6>2m﹣1;∴m<﹣5;②B≠∅时,,此不等式组无解;∴m的取值范围是(﹣∞,﹣5)【点睛】本题主要考查集合的基本运算以及集合基本关系的应用,还考查了分类讨论的思想,属于基础题.20、(1)或;(2).【解析】(1)解分式不等式得集合A,解绝对值不等式得集合B,由集合的补运算和交运算的定义可得结论;(2)由(1)知集合P={-2,2,3},而集合Q中最大与最小值差为2,因此只有2,3是集合Q中的元素,从而得关于m的不等式,可得m的范围试题解析:(1)或(2)∵可知P中只可能元素2,3属于Q解得21、(1),(2)在区间(0,0.5)上是单调递减的【解析】(Ⅰ)∵函数是奇函数,则即∴------------------------2分由得解得∴,.------------------------------------------------------6分(Ⅱ)解法1:由(Ⅰ)知,∴,----------------------------------------8分当时,----------------------------10分∴,即函数在区间上为减函数.------------12分[解法2:设,则==------------------------------10分∵∴,,∴,即∴函数在区间上为减函数.--------------------------12分].22、(1),(2),【解析】(1)根据图像可得及函数的周期,从而求得,然后利用待定系数法即可求得,再根据正弦函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论