版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用频率估计概率情境导入问题1抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?会出现“正面朝上”和“反面朝上”两种情况.问题2它们的概率是多少?都是.问题3
在实际掷硬币时,会出现什么情况呢?探究新知(1)抛掷一枚均匀硬币400次,每隔50次,分别记录“正面朝上”和“反面朝上”的次数,汇总数据后,完成下表:累计抛掷次数50100150200250300350400“正面朝上”的频数“正面朝上”的频率2346781021231501752000.460.460.520.510.490.500.500.50(2)根据上表的数据,在下图中画折线统计图表示“正面朝上”的频率.(2)根据上表的数据,在下图中画折线统计图表示“正面朝上”的频率.(3)在下图中,用红笔画出表示频率为的直线,你发现了什么?试验次数越多频率越接近0.5,即频率稳定于概率.(4)下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?归纳①随着掷硬币次数的增加,“正面朝上”的频率稳定在
左右.②通过大量的重复试验,可以用随机事件发生的频率来估计该事件发生的概率.对于掷硬币试验,它的所有可能结果只有两个,而且出现两种可能结果的可能性相等,而对于一般的随机事件,当试验所有的可能结果不是有限个,或者各种可能结果发生的可能性不相等时,就不能用前面的方法来求概率.思考:频率是否可以估计该随机事件的概率呢?在一块平整地板上抛掷一个矿泉水瓶盖,瓶盖落地后有两种可能情况:“开口朝上”和“开口不朝上”.由于瓶盖头重脚轻,上下不对称,“开口朝上”和“开口不朝上”的可能性一样吗?如果不一样,出现哪种情况的可能性大一些?我们借助重复试验来解决这个问题.(1)全班同学分成6组,每组同学依次抛掷瓶盖80次,观察瓶盖着地时的情况,并根据全班试验结果填写下表:累计抛掷次数80160240320400480“开口朝上”的频数“开口朝上”的频率43841271702122580.5380.5250.5290.5310.5300.538(2)根据上表中的数据,在下图中画折线统计图表示“开口朝上”的频率.(2)根据上表中的数据,在下图中画折线统计图表示“开口朝上”的频率.(3)观察下图,随着抛掷次数的增加,“开口朝上”的频率是如何变化的?试验次数越多频率越接近0.53,即频率稳定于概率.(4)该试验中,是“开口朝上”的可能性大还是“开口不朝上”的可能性大?“开口朝上”的可能性大归纳在同样条件下,大量重复实验时,如果事件A发生的频率稳定在某个常数P,那么事件A发生的概率P(A)=P.在抛瓶盖试验中,“开口朝上”的频率稳定于哪一个数值?你能估计出瓶盖“开口朝上”的概率吗?频率与概率的区别和联系1.频率和概率都是刻画随机事件发生可能性大小的量.2.频率与试验次数及具体试验有关,具有随机性.3.概率是刻画随机事件发生可能性大小的,是一个固定值,不具有随机性.4.每次试验的可能结果不是有限个或各种可能结果发生的可能性不相等时,用频率估计概率.瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生哪种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924合格品率(1)计算上表中合格品率的各频率(精确到0.001);0.9500.9600.9570.9630.9620.9620.9630.9610.962抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924合格品率(2)估计这种瓷砖的合格品率(精确到0.01);0.9500.9600.9570.9630.9620.9620.9630.9610.962观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品频率稳定在0.962的附近,所以我们可取p=0.96作为该型号瓷砖的合格品率的估计.抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924合格品率(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.0.9500.9600.9570.9630.9620.9620.9630.9610.962500000×96%=480000(块)可以估计该型号合格品数为480000块.练习如图是一个能自由转动的转盘,盘面被分成8个相同的扇形,颜色分为红、黄、蓝3种.转盘的指针固定,让转盘自由转动,当它停止后,记下指针指向的颜色.如此重复做50次,把结果记录在下表中:(1)试估计当圆盘停下来时,指针指向黄色的概率是多少?(2)如果自由转动圆盘240次,那么指针指向黄色的次数大约是多少?随堂练习1.关于频率与概率的关系,下列说法中正确的是()A.频率等于概率B.当试验次数很大时,频率稳定在概率的附近C.当试验次数很大时,概率稳定在频率附近D.试验得到的频率与概率不可能相等B2.在一个不透明的口袋里装着只有颜色不同的黑、白两种球共20只,某学习小组做摸球实验,每次摸完再把它放回袋中,不断重复,下表是摸球实验的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近多少?假如你摸一次,你摸到白球的概率P(白球)=________.(2)试估算口袋中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度医疗设备采购及安装调试合同
- 2024年生料立磨安全操作规程(2篇)
- 2022年教师师德学习参考心得体会5篇
- 创业空间服务合同范例
- 物流公司客服合同模板
- 电车购车合同范例
- 民事经济委托代理合同范例
- 2024年内科护理工作计划(3篇)
- 企业员工绩效考核管理制度模版(2篇)
- 浙江招聘合同范例
- 普外科一科一品一特色科室活动方案
- 11.20世界慢阻肺日认识你的肺功能预防控制和消除慢阻肺课件
- 外研版英语2024七年级上册全册单元知识清单(默写版)
- 国开2024年秋《机电控制工程基础》形考任务4答案
- 政法系统领导干部专题读书班学习心得体会范文(三篇)
- 沂蒙红色文化与沂蒙精神智慧树知到期末考试答案2024年
- 国开一体化平台01588《西方行政学说》章节自测(1-23)试题及答案
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- TCALC 003-2023 手术室患者人文关怀管理规范
- 收费站冬季安全注意事项
评论
0/150
提交评论