版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
传感器与检测技术第1章概述课程简介1.1.1本课程的地位和作用1.1.2本课程内容体系结构按照传感器、检测技术和自动检测系统三大模块。传感器部分主要包括传感器的基本特性、各类传统与新型传感器的工作原理与应用(应变式、电感式、电容式、压电式、磁电式、热电式、光电式、辐射与波式、数字式、智能式传感器;化学传感器、生物传感器、微传感器等)检测技术主要包括参数检测、微弱信号检测、软测量、多传感器数据融合、测量不确定度与回归分析等检测系统主要包括虚拟仪器和自动检测系统等。1.1.3本课程的任务及要求“传感器与检测技术”是一门涉及到电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。“传感器与检测技术”课程着重培养学生掌握传感器与检测技术基本理论、基本方法,本课程是一门实践性很强的课程,在理论学习的同时,要求学生通过实验和实践熟练掌握各类典型传感器的基本原理和适用场合,掌握常用测量仪器的基本工作原理和工作性能,能合理选用常用电子仪器、测量电路等,能根据测量要求设计各类测量系统,能对测量结果进行误差分析和数据处理等,达到理论与实践的高度统一,突出能力的培养。1.2传感器的定义与组成传感器:能感受被测量并按照一定规律转换成可用输出信号的器件或装置传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量传感器功能:检测和转换。敏感元件是传感器中能直接感受(或响应)被测信息(非电量)的元件转换元件则是指传感器中能将敏感元件的感受(或响应)信息转换为电信号的部分传感器的组成1.3传感器的分类按传感器的构成进行分类:物性型和结构型
按传感器的输入量(即被测参数)进行分类:位移、速度、温度、压力传感器等按传感器的输出量进行分类:模拟式和数字式按传感器的基本效应分类:物理型、化学型、生物型按传感器的工作原理进行分类:应变式、电容式、电感式、压电式、热电式传感器等按传感器的能量变换关系进行分类:有源(能量控制型)、无源(能量变换型)1.4传感器技术的发展传感器性能的改善开展基础理论研究传感器的集成化传感器的智能化传感器的网络化传感器的微型化1.4.1传感器性能的改善差动技术
平均技术
补偿与修正技术
屏蔽、隔离与干扰抑制
稳定性处理
1.4.2开展基础理论研究寻找新原理
开发新材料
采用新工艺
探索新功能
1.4.3传感器的集成化两种情况:一是具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。二是不同功能的传感器集成化,即将具有不同功能的传感器与放大、运算以及温度补偿等环节一体化,组装成一个器件,从而使一个传感器可以同时测量不同种类的多个参数。1.4.4传感器的智能化传感器与微处理器的结合:检测、信息处理、逻辑判断、自诊断等作用:提高测量精度增加功能提高自动化程度1.4.5传感器的网络化主要表现为两个方面一是为了解决现场总线的多样性问题,IEEE
1451.2工作组建立了智能传感器接口模块(STIM)标准二是以IEEE
802.15.4(Zigbee)为基础的无线传感器网络技术得以迅速发展第2章传感器的基本特性传感器的基本特性:传感器的输入-输出关系特性。是传感器内部结构参数作用关系的外部表现输入信号分为:稳态、动态对应传感器特性:静态特性、动态特性对传感器的要求:高精度->信号(或能量)无失真转换->反映被测量的原始特征2.1传感器的静态特性传感器的静态特性:在稳态信号作用下的输入-输出关系。不含有时间变量。线性度灵敏度分辨率迟滞重复性漂移2.1.1线性度传感器的输入、输出间成线性关系的程度非线性特性的线性化处理2.1.2灵敏度传感器在稳态信号作用下输出量变化对输入量变化的比值2.1.3分辨率分辨率是指传感器能够感知或检测到的最小输入信号增量。分辨率可以用绝对值或与满量程的百分比来表示。2.1.4迟滞在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信号大小不相等的现象产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等2.1.5重复性传感器在输入量按同一方向作全量程多次测试时所得输入-输出特性曲线一致的程度2.1.6漂移传感器在输入量不变的情况下,输出量随时间变化的现象产生原因:传感器自身结构参数老化测试过程中环境发生变化2.2传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性一个动态特性好的传感器,其输出随时间变化的规律,将能再现输入随时间变化的规律,即具有相同的时间函数动态特性分析2.2.1传感器的数学模型线性时不变系统理论来描述传感器的动态特性用常系数线性微分方程(线性定常系统)表示传感器输出量与输入量的关系线性时不变系统有两个重要的性质叠加性如果则:频率保持特性如果则:2.2.2传递函数特性关系式:拉氏变换:变形:传递函数:2.2.3频率响应函数傅立叶变换得到频率响应特性:指数表示:幅频特性:相频特性:2.2.4传感器的动态特性分析1、一阶传感器的频率响应2、二阶传感器的频率响应2.3传感器的标定与校准传感器的标定是利用某种标准仪器对新研制或生产的传感器进行技术检定和标度;它是通过实验建立传感器输入量与输出量间的关系,并确定出不同使用条件下的误差关系或测量精度。传感器的校准是指对使用或储存一段时间后的传感器性能进行再次测试和校正,校准的方法和要求与标定相同。2.3.1静态标定传感器的静态标定是在输入信号不随时间变化的静态标准条件下确定传感器的静态特性指标,如线性度、灵敏度、迟滞、重复性等。静态标准是指没有加速度、没有振动、没有冲击(如果它们本身是被测量除外)及环境温度一般为室温(20±5℃),相对湿度不大于85%,大气压力为7kPa的情形。2.3.2动态标定动态标定主要是研究传感器的动态响应特性。常用的标准激励信号源是正弦信号和阶跃信号。根据传感器的动态特性指标,传感器的动态标定主要涉及到一阶传感器的时间常数,二阶传感器的固有角频率和阻尼系数等参数的确定。第4章电感式传感器4.1变磁阻式传感器
4.2差动变压器式传感器4.3电涡流式传感器电感式传感器的工作基础:电磁感应即利用线圈电感或互感的改变来实现非电量测量分为变磁阻式、变压器式、涡流式等特点:工作可靠、寿命长灵敏度高,分辨力高精度高、线性好性能稳定、重复性好4.1变磁阻式传感器(自感式)4.1.1工作原理
变磁阻式传感器由线圈、铁芯和衔铁三部分组成。铁芯和衔铁由导磁材料制成。在铁芯和衔铁之间有气隙,传感器的运动部分与衔铁相连。当衔铁移动时,气隙厚度δ发生改变,引起磁路中磁阻变化,从而导致电感线圈的电感值变化,因此只要能测出这种电感量的变化,就能确定衔铁位移量的大小和方向。线圈中电感量可由下式确定:
根据磁路欧姆定律:式中,Rm为磁路总磁阻。(4-1)(4-2)气隙很小,可以认为气隙中的磁场是均匀的。若忽略磁路磁损,则磁路总磁阻为(4-3)通常气隙磁阻远大于铁芯和衔铁的磁阻,即(4-4)则式(4-3)可写为(4-5)联立式(4-1)、式(4-2)及式(4-5),可得(4-6)
上式表明:当线圈匝数为常数时,电感L仅仅是磁路中磁阻Rm的函数,改变δ或A0均可导致电感变化,因此变磁阻式传感器又可分为变气隙厚度δ的传感器和变气隙面积A0的传感器。目前使用最广泛的是变气隙厚度式电感传感器。4.1.2输出特性L与δ之间是非线性关系,特性曲线如图5-2所示。图4-2变隙式电压传感器的L-δ特性分析:当衔铁处于初始位置时,初始电感量为(4-7)
当衔铁上移Δδ时,传感器气隙减小Δδ,即δ=δ0-Δδ,则此时输出电感为(4-8)当Δδ/δ0<<1时(台劳级数):(4-9)可求得电感增量ΔL和相对增量ΔL/L0的表达式,即(4-10)(4-11)同理,当衔铁随被测体的初始位置向下移动Δδ时,有(4-12)(4-13)对式(4-11)、(4-13)作线性处理,即忽略高次项后,可得(4-14)灵敏度为可见:变间隙式电感传感器的测量范围与灵敏度及线性度相矛盾,因此变隙式电感式传感器适用于测量微小位移的场合。(4-15)与衔铁上移切线斜率变大衔铁下移切线斜率变小与线性度衔铁上移:衔铁下移:无论上移或下移,非线性都将增大。差动变隙式电感传感器为了减小非线性误差,实际测量中广泛采用差动变隙式电感传感器。衔铁上移Δδ:两个线圈的电感变化量ΔL1、ΔL2分别由式(4-10)及式(4-12)表示,差动传感器电感的总变化量ΔL=ΔL1+ΔL2,具体表达式为对上式进行线性处理,即忽略高次项得灵敏度K0为比较单线圈式和差动式:①差动式变间隙电感传感器的灵敏度是单线圈式的两倍。②差动式的非线性项(忽略高次项):单线圈的非线性项(忽略高次项):由于Δδ/δ0<<1,因此,差动式的线性度得到明显改善。4.1.3测量电路
电感式传感器的测量电路有交流电桥式、变压器式交流电桥以及谐振式等。
1.交流电桥式测量电路当衔铁下移时:变压器式交流电桥2.变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗,另外两桥臂为交流变压器次级线圈的1/2阻抗。当负载阻抗为无穷大时,桥路输出电压
当传感器的衔铁处于中间位置,即Z1=Z2=Z,此时有 ,电桥平衡。当传感器衔铁上移:如Z1=Z+ΔZ,Z2=Z-ΔZ,(4-25)当传感器衔铁下移:如Z1=Z-ΔZ,Z2=Z+ΔZ,此时(4-26)可知:衔铁上下移动相同距离时,输出电压相位相反,大小随衔铁的位移而变化。由于是交流电压,输出指示无法判断位移方向,必须配合相敏检波电路来解决。3.谐振式测量电路分为:谐振式调幅电路和谐振式调频电路。调幅电路特点:此电路灵敏度很高,但线性差,适用于线性度要求不高的场合。
调频电路:振荡频率 。当L变化时,振荡频率随之变化,根据f的大小即可测出被测量的值。具有严重的非线性关系。4.1.4变磁阻式传感器的应用变隙电感式压力传感器结构图
当压力进入膜盒时,膜盒的顶端在压力P的作用下产生与压力P大小成正比的位移,于是衔铁也发生移动,从而使气隙发生变化,流过线圈的电流也发生相应的变化,电流表A的指示值就反映了被测压力的大小。
当被测压力进入C形弹簧管时,C形弹簧管产生变形,其自由端发生位移,带动与自由端连接成一体的衔铁运动,使线圈1和线圈2中的电感发生大小相等、符号相反的变化。即一个电感量增大,另一个电感量减小。电感的这种变化通过电桥电路转换成电压输出。由于输出电压与被测压力之间成比例关系,所以只要用检测仪表测量出输出电压,即可得知被测压力的大小。变隙式差动电感压力传感器4.2差动变压器式传感器(互感式)
把被测的非电量变化转换为线圈互感变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动形式连接,故称差动变压器式传感器。差动变压器结构形式:变隙式、变面积式和螺线管式等。在非电量测量中,应用最多的是螺线管式差动变压器,它可以测量1~100mm机械位移,并具有测量精度高、灵敏度高、结构简单、性能可靠等优点。4.2.1变隙式差动变压器
1.工作原理
假设:初级绕组W1a=W1b=W1,次级绕组和W2a=W2b=W2两个初级绕组的同名端顺向串联,两个次级绕组的同名端则反相串联。
当没有位移时,衔铁C处于初始平衡位置,它与两个铁芯的间隙有δa0=δb0=δ0,则绕组W1a和W2a间的互感Ma与绕组W1b和W2b的互感Mb相等,致使两个次级绕组的互感电势相等,即e2a=e2b。由于次级绕组反相串联,因此,差动变压器输出电压Uo=e2a-e2b=0。当被测体有位移时,与被测体相连的衔铁的位置将发生相应的变化,使δa≠δb,互感Ma≠Mb,两次级绕组的互感电势e2a≠e2b,输出电压Uo=e2a-e2b≠0,即差动变压器有电压输出,此电压的大小与极性反映被测体位移的大小和方向。..
2.输出特性在忽略铁损(即涡流与磁滞损耗忽略不计)、漏感以及变压器次级开路(或负载阻抗足够大)的条件下,等效电路。r1a与L1a,r1b与L1b,r2a与L2a,r2b与L2b,分别为W1a,W1b,W2a,W2b绕阻的直流电阻与电感。当r1a<<ωL1a,r1b<<ωL1b时,如果不考虑铁芯与衔铁中的磁阻影响,可得变隙式差动变压器输出电压Uo的表达式,即.分析:当衔铁处于初始平衡位置时,因δa=δb=δ0,则Uo=0。但是如果被测体带动衔铁移动,例如向上移动Δδ(假设向上移动为正)时,则有δa=δ0-Δδ,δb=δ0+Δδ,代入上式可得.
上式表明:变压器输出电压Uo与衔铁位移量Δδ/δ0成正比。
“-”号的意义:当衔铁向上移动时,Δδ/δ0定义为正,变压器输出电压Uo与输入电压Ui反相(相位差180°);而当衔铁向下移动时,Δδ/δ0则为-|Δδ/δ0|,表明Uo与Ui同相。图4.12所示为变隙式差动变压器输出电压Uo与位移Δδ的关系曲线。变隙式差动变压器灵敏度K的表达式为图4.12变隙式差动变压器输出特性
分析结论:①首先,供电电源Ui要稳定(获取稳定的输出特性);其次,电源幅值的适当提高可以提高灵敏度K值,但要以变压器铁芯不饱和以及允许温升为条件。②增加W2/W1的比值和减小δ0都能使灵敏度K值提高。(W2/W1影响变压器的体积及零点残余电压。一般选择传感器的δ0为0.5mm。)③以上分析的结果是在忽略铁损和线圈中的分布电容等条件下得到的,如果考虑这些影响,将会使传感器性能变差(灵敏度降低,非线性加大等)。但是,在一般工程应用中是可以忽略的。④以上结果是在假定工艺上严格对称的前提下得到的,而实际上很难做到这一点,因此传感器实际输出特性存在零点残余电压ΔUo。⑤变压器副边开路的条件对由电子线路构成的测量电路来讲容易满足,但如果直接配接低输入阻抗电路,须考虑变压器副边电流对输出特性的影响。4.2.2螺线管式差动变压器
1.工作原理
两个次级线圈反相串联,并且在忽略铁损、导磁体磁阻和线圈分布电容的理想条件下,其等效电路。当初级绕组加以激励电压U时,根据变压器的工作原理,在两个次级绕组W2a和W2b中便会产生感应电势E2a和E2b。如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时,必然会使两互感系数M1=M2。根据电磁感应原理,将有E2a=E2b。由于变压器两次级绕组反相串联,因而Uo=E2a-E2b=0,即差动变压器输出电压为零。
当活动衔铁向上移动时,由于磁阻的影响,W2a中磁通将大于W2b,使M1>M2,因而E2a增加,而E2b减小。反之,E2b增加,E2a减小。因为Uo=E2a-E2b,所以当E2a、E2b
随着衔铁位移x变化时,Uo也必将随x而变化。当衔铁位于中心位置时,差动变压器输出电压并不等于零,我们把差动变压器在零位移时的输出电压称为零点残余电压,记作ΔUo,它的存在使传感器的输出特性不经过零点,造成实际特性与理论特性不完全一致。零点残余电压产生原因:主要是由传感器的两次级绕组的电气参数和几何尺寸不对称,以及磁性材料的非线性等引起的。零点残余电压的波形十分复杂,主要由基波和高次谐波组成。基波产生的主要原因是:传感器的两次级绕组的电气参数、几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,因此不论怎样调整衔铁位置,两线圈中感应电势都不能完全抵消。高次谐波(主要是三次谐波)产生原因:是磁性材料磁化曲线的非线性(磁饱和、磁滞)。零点残余电压一般在几十毫伏以下,在实际使用时,应设法减小Ux,否则将会影响传感器的测量结果。2.基本特性根据差动变压器等效电路。当次级开路时式中:U——初级线圈激励电压;
ω——激励电压U的角频率;
I1——初级线圈激励电流;
r1、
L1——初级线圈直流电阻和电感。..根据电磁感应定律,次级绕组中感应电势的表达式分别为
由于次级两绕组反相串联,且考虑到次级开路,则由以上关系可得
上式说明,当激磁电压的幅值U和角频率ω、初级绕组的直流电阻r1及电感L1为定值时,差动变压器输出电压仅仅是初级绕组与两个次级绕组之间互感之差的函数。只要求出互感M1和M2对活动衔铁位移x的关系式,可得到螺线管式差动变压器的基本特性表达式。输出电压的有效值为分析……
①活动衔铁处于中间位置时M1=M2=M
故Uo=0②活动衔铁向上移动时M1=M+ΔM,M2=M-ΔM
故与E2a同极性。.③活动衔铁向下移动时M1=M-ΔM,M2=M+ΔM
故与E2b同极性。.3.差动变压器式传感器测量电路
问题:(1)差动变压器的输出是交流电压(用交流电压表测量,只能反映衔铁位移的大小,不能反映移动的方向);(2)测量值中将包含零点残余电压。为了达到能辨别移动方向和消除零点残余电压的目的,实际测量时,常常采用差动整流电路和相敏检波电路。
(1)差动整流电路这种电路是把差动变压器的两个次级输出电压分别整流,然后将整流的电压或电流的差值作为输出。
从图(c)电路结构可知,不论两个次级线圈的输出瞬时电压极性如何,流经电容C1的电流方向总是从2到4,流经电容C2的电流方向总是从6到8,故整流电路的输出电压为
当衔铁在零位时,因为U24=U68,所以U2=0;当衔铁在零位以上时,因为U24>U68
,则U2>0;而当衔铁在零位以下时,则有U24<U68,则U2<0。U2的正负表示衔铁位移的方向。..........(2)相敏检波电路输入信号u2(差动变压器式传感器输出的调幅波电压)通过变压器T1加到环形电桥的一个对角线上。参考信号us通过变压器T2加到环形电桥的另一个对角线上。输出信号uo从变压器T1与T2的中心抽头引出。平衡电阻R起限流作用,以避免二极管导通时变压器T2的次级电流过大。RL为负载电阻。us的幅值要远大于输入信号u2的幅值,以便有效控制四个二极管的导通状态,且us和差动变压器式传感器激磁电压u1由同一振荡器供电,保证二者同频同相(或反相)。
根据变压器的工作原理,考虑到O、M分别为变压器T1、T2的中心抽头,则
采用电路分析的基本方法
当u0与uy’均为负半周时:二极管VD2、VD3截止,VD1、VD4导通。输出电压uo表达式相同。说明只要位移Δx>0,不论u0与uy’是正半周还是负半周,负载电阻RL两端得到的电压始终为正。当Δx<0时:u0与uy’为同频反相。不论u0与uy’是正半周还是负半周,负载电阻RL两端得到的输出电压表达式总是为4.差动变压器式传感器的应用
可直接用于位移测量,也可以测量与位移有关的任何机械量,如振动、加速度、应变、比重、张力和厚度等。电感式滚珠直径分选装置实现按滚珠直径大小分类并计数图4.22差动变压器式加速度传感器原理图
差动变压器式加速度传感器:由悬臂梁和差动变压器构成。测量时,将悬臂梁底座及差动变压器的线圈骨架固定,而将衔铁的A端与被测振动体相连,此时传感器作为加速度测量中的惯性元件,它的位移与被测加速度成正比,使加速度测量转变为位移的测量。当被测体带动衔铁以Δx(t)振动时,导致差动变压器的输出电压也按相同规律变化。4.3电涡流式传感器(互感式)4.3.1工作原理电涡流式传感器原理图(a)传感器激励线圈;(b)被测金属导体
根据法拉第定律,当传感器线圈通以正弦交变电流I1时,线圈周围空间必然产生正弦交变磁场H1,使置于此磁场中的金属导体中感应电涡流I2,I2又产生新的交变磁场H2。根据愣次定律,H2的作用将反抗原磁场H1,由于磁场H2的作用,涡流要消耗一部分能量,导致传感器线圈的等效阻抗发生变化。线圈阻抗的变化完全取决于被测金属导体的电涡流效应。式中,r为线圈与被测体的尺寸因子。
测量方法:如果保持上式中其它参数不变,而只改变其中一个参数,传感器线圈阻抗Z就仅仅是这个参数的单值函数。通过与传感器配用的测量电路测出阻抗Z的变化量,即可实现对该参数的测量。Z=F(ρ,μ,r,f,x)
传感器线圈受电涡流影响时的等效阻抗Z的函数关系式为4.3.2基本特性电涡流式传感器简化模型
电涡流传感器简化模型中,把在被测金属导体上形成的电涡流等效成一个短路环,即假设电涡流仅分布在环体之内,模型中h(电涡流的贯穿深度)可由下式求得:式中,f为线圈激磁电流的频率。电涡流式传感器等效电路图
根据简化模型,可画出等效电路图。图中R2为电涡流短路环等效电阻,其表达式为根据基尔霍夫第二定律,可列出如下方程:解得等效阻抗Z的表达式为线圈的等效品质因数Q值为可见:因涡流效应,线圈的品质因素Q下降。4.3.3电涡流传感器测量电路
主要有调频式、调幅式电路两种。
1.调频式电路
传感器线圈接入LC振荡回路,当传感器与被测导体距离x改变时,在涡流影响下,传感器的电感变化,将导致振荡频率的变化,该变化的频率是距离x的函数,即f=L(x),该频率可由数字频率计直接测量,或者通过f-V变换,用数字电压表测量对应的电压。振荡器的频率为为了避免输出电缆的分布电容的影响,通常将L、C装在传感器内。此时电缆分布电容并联在大电容C2、C3上,因而对振荡频率f的影响将大大减小。
2.调幅式电路由传感器线圈L、电容器C和石英晶体组成。石英晶体振荡器起恒流源的作用,给谐振回路提供一个频率(f0)稳定的激励电流io,LC回路输出电压式中,Z为LC回路的阻抗。
当金属导体远离或去掉时,LC并联谐振回路谐振频率即为石英振荡频率fo,回路呈现的阻抗最大,谐振回路上的输出电压也最大;当金属导体靠近传感器线圈时,线圈的等效电感L发生变化,导致回路失谐,从而使输出电压降低,L的数值随距离x的变化而变化。因此,输出电压也随x而变化。输出电压经放大、检波后,由指示仪表直接显示出x的大小。除此之外,交流电桥也是常用的测量电路。4.3.4电涡流式传感器的应用1、位移测量2、振幅测量3、转速测量4、无损探伤第5章电容式传感器主要内容5.1电容式传感器的工作原理5.2变极距型电容式传感器的非线性5.3电容式传感器的等效电路5.4电容式传感器的信号调节电路5.5电容式传感器的应用电容式传感器利用了将非电量的变化转换为电容量的变化来实现对物理量的测量。广泛用于位移、振动、角度、加速度以及压力、差压、液面(料位)、成份含量等方面的测量。特点:结构简单、体积小、分辨率高;可实现非接触式测量;动态响应好;能在高温、辐射和强振动等恶劣条件下工作;电容量小,功率小,输出阻抗高,负载能力差,易受外界干扰产生不稳定现象。5.1电容式传感器的工作原理在实际使用中,通常保持其中两个参数不变,而只变其中一个参数,把该参数的变化转换成电容量的变化,通过测量电路转换为电量输出。电容式传感器可分为三种:变极板间距离的变极距型改变极板面积的变面积型改变介质介电常数的变介质型电容式传感器的结构5.1.1变面积型电容式传感器电容改变量与水平位移成线性关系电容改变量与角位移呈线性关系5.1.2变极距型电容式传感器简化:近似直线关系击穿问题一般极板间距在25~200um范围内,而最大位移应小于间距的十分之一,因此这种电容式传感器主要用于微位移测量。5.1.3变介质型电容式传感器电容增量与被测液位的高度成线性关系变极距型电容式传感器的非线性单位输入位移所引起的输出电容量变化与成反比关系非线性误差非线性误差:差动结构差动的好处灵敏度得到一倍的改善线性度得到改善5.2电容式传感器的测量电路5.2.1调频电路5.2.2变压器式交流电桥5.2.3运算放大器对平板电容器:
输出电压与输入位移间存在线性关系
5.2.4二极管双T型交流电桥当传感器没有输入时,
C1=C2一个周期内流过负载的平均电流为0当传感器有输入时,C1!=C25.2.5脉冲宽度调制电路变极距型:变面积型:差动脉冲宽度调制电路适用于变极板距离和变面积式差动电容传感器,且为线性特性。5.3电容式传感器的应用5.3.1电容式压力传感器5.3.2电容式位移传感器5.3.3电容式加速度传感器5.3.4电容式厚度传感器第6章压电式传感器主要内容6.1
工作原理6.2压电式传感器测量电路6.3压电式传感器的应用6.1.1压电效应压电效应:是对某些电介质沿一定方向施以外力使其变形时,其内部将产生极化现象而使其表面出现电荷集聚的现象。在外力去除后又重新恢复到不带电状态,是机械能转变为电能。正压电效应,逆压电效应特点:结构简单、体积小、重量轻;工作频带宽;灵敏度高;信噪比高;工作可靠;测量范围广等。用途:主要用于与力相关的动态参数测试,如动态力、机械冲击、振动等,它可以把加速度、压力、位移、温度等许多非电量转换为电量。6.1.2压电材料X轴向受力:Y轴向受力:Z轴向受力:无石英晶体(单晶体)现象:机理:机理:压电陶瓷(多晶体)
压电机理:压电陶瓷是人工制造的多晶体压电材料。材料内部的晶粒有许多自发极化的电畴,它有一定的极化方向,从而存在电场。在无外电场作用时,电畴在晶体中杂乱分布,它们各自的极化效应被相互抵消,压电陶瓷内极化强度为零。因此原始的压电陶瓷呈中性,不具有压电性质。在陶瓷上施加外电场时,电畴的极化方向发生转动,趋向于按外电场方向的排列,从而使材料得到极化。外电场愈强,就有更多的电畴更完全地转向外电场方向。让外电场强度大到使材料的极化达到饱和的程度,即所有电畴极化方向都整齐地与外电场方向一致时,当外电场去掉后,电畴的极化方向基本变化,即剩余极化强度很大,这时的材料才具有压电特性。
极化处理后陶瓷材料内部存在有很强的剩余极化,当陶瓷材料受到外力作用时,电畴的界限发生移动,电畴发生偏转,从而引起剩余极化强度的变化,因而在垂直于极化方向的平面上将出现极化电荷的变化。这种因受力而产生的由机械效应转变为电效应,将机械能转变为电能的现象,就是压电陶瓷的正压电效应。电荷量的大小与外力成如下的正比关系:式中:
d33——
压电陶瓷的压电系数;
F——作用力。
压电陶瓷的压电系数比石英晶体的大得多,所以采用压电陶瓷制作的压电式传感器的灵敏度较高。极化处理后的压电陶瓷材料的剩余极化强度和特性与温度有关,它的参数也随时间变化,从而使其压电特性减弱。最早使用的压电陶瓷材料是钛酸钡(BaTiO3)。它的压电系数约为石英的50倍,但居里点温度只有115℃,使用温度不超过70℃,温度稳定性和机械强度都不如石英。目前使用较多的压电陶瓷材料是锆钛酸铅(PZT)系列,它是钛酸铅(PbTiO2)和锆酸铅(PbZrO3)组成的(Pb(ZrTi)O3)。居里点在300℃以上,性能稳定,有较高的介电常数和压电系数压电高分子材料高分子材料属于有机分子半结晶或结晶聚合物,其压电效应较复杂,不仅要考虑晶格中均匀的内应变对压电效应的贡献,还要考虑高分子材料中作非均匀内应变所产生的各种高次效应以及同整个体系平均变形无关的电荷位移而表现出来的压电特性。目前已发现的压电系数最高、且已进行应用开发的压电高分子材料是聚偏氟乙烯,其压电效应可采用类似铁电体的机理来解释。这种聚合物中碳原子的个数为奇数,经过机械滚压和拉伸制作成薄膜之后,带负电的氟离子和带正电的氢离子分别排列在薄膜的对应上下两边上,形成微晶偶极矩结构,经过一定时间的外电场和温度联合作用后,晶体内部的偶极矩进一步旋转定向,形成垂直于薄膜平面的碳-氟偶极矩固定结构。正是由于这种固定取向后的极化和外力作用时的剩余极化的变化,引起了压电效应。压电材料的特性参数压电系数弹性系数介电常数机电耦合系数电阻居里点压电材料的选取选用合适的压电材料是设计、制作高性能传感器的关键。一般应考虑:转换性能机械性能电性能温度、湿度稳定性好时间稳定性6.2压电式传感器的等效电路压电式传感器的测量电路电荷放大器电压放大器6.2.3压电元件的连接与变形压电元件的连接
单片压电元件产生的电荷量甚微,为了提高压电传感器的输出灵敏度,在实际应用中常采用两片(或两片以上)同型号的压电元件粘结在一起。从作用力看,元件是串接的,因而每片受到的作用力相同,产生的变形和电荷数量大小都与单片时相同。图a)从电路上看,这是并联接法,类似两个电容的并联。所以,外力作用下正负电极上的电荷量增加了1倍,电容量也增加了1倍,输出电压与单片时相同。图b)从电路上看是串联的,两压电片中间粘接处正负电荷中和,上、下极板的电荷量与单片时相同,总电容量为单片的一半,输出电压增大了1倍。
压电元件的变形6.3压电式传感器的应用6.3.1压电式力传感器6.3.2压电式加速度传感器第7章磁敏式传感器主要内容
7.1磁电感应式传感器7.2霍尔式传感器7.1磁电感应式传感器
磁电感应式传感器又称磁电式传感器,是利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号的一种传感器。它不需要辅助电源,就能把被测对象的机械量转换成易于测量的电信号,是一种有源传感器。由于它输出功率大,且性能稳定,具有一定的工作带宽(10~1000Hz),所以得到普遍应用。7.1.1工作原理根据电磁感应定律,当导体在稳恒均匀磁场中,沿垂直磁场方向运动时,导体内产生的感应电势为
恒磁通式传感器
工作原理:
磁路系统产生恒定的直流磁场,磁路中的工作气隙固定不变,因而气隙中磁通也是恒定不变的。其运动部件可以是线圈(动圈式),也可以是磁铁(动铁式),动圈式(图(a))和动铁式(图(b))的工作原理是完全相同的。当壳体随被测振动体一起振动时,由于弹簧较软,运动部件质量相对较大,当振动频率足够高(远大于传感器固有频率)时,运动部件惯性很大,来不及随振动体一起振动,近乎静止不动,振动能量几乎全被弹簧吸收,永久磁铁与线圈之间的相对运动速度接近于振动体振动速度,磁铁与线圈的相对运动切割磁力线,从而产生感应电势。变磁通式磁电传感器结构图(a)开磁路;(b)闭磁路变磁通式磁电传感器
图(a)为开磁路变磁通式:线圈、磁铁静止不动,测量齿轮安装在被测旋转体上,随被测体一起转动。每转动一个齿,齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中产生感应电势,其变化频率等于被测转速与测量齿轮上齿数的乘积。这种传感器结构简单,但输出信号较小,且因高速轴上加装齿轮较危险而不宜测量高转速的场合。
图(b)为闭磁路变磁通式传感器,它由装在转轴上的内齿轮和外齿轮、永久磁铁和感应线圈组成,内外齿轮齿数相同。当转轴连接到被测转轴上时,外齿轮不动,内齿轮随被测轴而转动,内、外齿轮的相对转动使气隙磁阻产生周期性变化,从而引起磁路中磁通的变化,使线圈内产生周期性变化的感应电动势。显然,感应电势的频率与被测转速成正比。
7.1.2磁电感应式传感器基本特性当测量电路接入磁电传感器电路时,磁电传感器的输出电流Io为式中:
Rf——测量电路输入电阻;
R——线圈等效电阻。传感器的电流灵敏度为==
而传感器的输出电压和电压灵敏度分别为
B值大,灵敏度也大,因此要选用B值大的永磁材料;线圈的平均长度大也有助于提高灵敏度,但这是有条件的,要考虑两种情况:线圈电阻与指示器电阻匹配问题如图7.3所示,因传感器相当于一个电压源,为使指示器从传感器获得最大功率,必须使线圈的电阻等于指示器的电阻。线圈的发热问题传感器线圈产生感应电动势,接上负载后,线圈中有电流流过而发热。测量误差
当传感器的工作温度发生变化或受到外界磁场干扰、受到机械振动或冲击时,其灵敏度将发生变化,从而产生测量误差,其相对误差为非线性误差
主要原因:当磁电式传感器在进行测量时,传感器线圈会有电流流过,这时线圈会产生一定的交变磁通,此交变磁通会叠加在永久磁铁产生的传感器工作磁通上,导致气隙磁通变化。这种影响分为两种情况温度误差
温度误差补偿办法:在结构允许的情况下,在传感器的磁铁下设置热磁分路,进行温度补偿。动态特性
当被测物振动频率低于传感器的固有频率时,传感器的灵敏度是随振动频率的升高而明显增加的;当振动频率远大于传感器固有频率时,传感器的灵敏度接近为一个常数,它基本上不随频率变化,即在这一频率范围内,传感器的输出电压与振动速度成正比关系,这一频段就是传感器的理想工作频段;在振动频率更高(过大)的情况下,线圈阻抗增加,传感器灵敏度会随着振动频率的增加反而下降。7.1.2测量电路7.1.3磁电感应式传感器的应用磁电感应式振动速度传感器
磁电感应式扭矩传感器电磁流量计7.2霍尔式传感器当载流导体或半导体处于与电流相垂直的磁场中时,在其两端将产生电位差,这一现象被称为霍尔效应。霍尔效应产生的电动势被称为霍尔电势。霍尔效应的产生是由于运动电荷受磁场中洛伦兹力作用的结果。霍尔元件霍尔元件基本特性
线性特性与开关特性不等位电阻负载特性温度特性霍尔元件的零位误差及补偿
不等位电动势的补偿寄生直流电动势的补偿元件在制作安装时,尽量做到使电极欧姆接触,并做到均匀散热。欧姆接触:金属与半导体的接触,其接触面的电阻值远小于半导体本身的电阻。霍尔元件的温度误差及其补偿7.2.2测量电路7.2.3霍尔式传感器的应用微位移的测量
转速的测量
压力的测量
第8章热电式传感器8.1热电偶传感器8.2热电阻传感器8.3热敏电阻传感器
教学基本要求和重点掌握有关热电偶、热电阻和热敏电阻的基本概念掌握三类热电式传感器的基本工作原理掌握热电偶的基本定律、基本类型、温度补偿方法、使用热电偶的测温方法掌握热电阻的内部引线方式及其适用场合掌握热敏电阻的电阻-温度特性会使用分度表8.1热电偶传感器
1.热电偶测温原理热电效应:两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势的现象。热电势、热电偶、热电极热端(测量端或工作端)、冷端(参考端或自由端)
热电偶回路接触电动势
接触电动势的数值取决于两种不同导体的材料特性和接触点的温度。两接点的接触电动势eAB(T)和eAB(T0)可表示为含义:由于两种不同导体的自由电子密度不同而在接触处形成的电动势。
同一导体的两端因其温度不同而产生的一种电动势。大小表示:
温差电动势机理:高温端的电子能量要比低温端的电子能量大,从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正电,低温端因获得多余的电子而带负电,在导体两端便形成温差电动势。热电偶回路中产生的总热电势
eAB(T,T0)=eAB(T)+eB(T,T0)-eAB(T0)-eA(T,T0) 忽略温差电动势,热电偶的热电势可表示为:
影响因素取决于材料和接点温度,与形状、尺寸等无关两热电极相同时,总电动势为0两接点温度相同时,总电动势为0对于已选定的热电偶,当参考端温度T0恒定时,eAB(T0)=c为常数,则总的热电动势就只与温度T成单值函数关系,即
可见:只要测出eAB(T,T0)的大小,就能得到被测温度T,这就是利用热电偶测温的原理。讨论热电偶的分度表不同金属组成的热电偶,温度与热电动势之间有不同的函数关系,一般通过实验的方法来确定,并将不同温度下测得的结果列成表格,编制出热电势与温度的对照表,即分度表。供查阅使用,每10℃分档。中间值按内插法计算。S型(铂铑10-铂)热电偶分度表
在热电偶测温回路内,接入第三种导体时,只要第三种导体的两端温度相同,则对回路的总热电势没有影响。中间导体定律
应用:利用热电偶进行测温,必须在回路中引入连接导线和仪表,接入导线和仪表后不会影响回路中的热电势。2.热电偶基本定律测量仪表及引线作为第三种导体的热电偶回路中间温度定律eAB(t,t0)=eAB(t,tc)+eAB(tc,t0)
在热电偶测温回路中,tc为热电极上某一点的温度,热电偶AB在接点温度为t、t0时的热电势eAB(t,t0)等于热电偶AB在接点温度t、tc和tc、t0时的热电势eAB(t,tc)和eAB(tc,t0)的代数和,即中间温度定律中间温度定律的应用
根据这个定律,可以连接与热电偶热电特性相近的导体A′和B,将热电偶冷端延伸到温度恒定的地方,这就为热电偶回路中应用补偿导线提供了理论依据。
该定律是参考端温度计算修正法的理论依据。在实际热电偶测温回路中,利用热电偶这一性质,可对参考端温度不为0℃的热电势进行修正。标准导体(电极)定律标准导体定律的意义通常选用高纯铂丝作标准电极只要测得它与各种金属组成的热电偶的热电动势,则各种金属间相互组合成热电偶的热电动势就可根据标准电极定律计算出来。例子热端为100℃,冷端为0℃时,镍铬合金与纯铂组成的热电偶的热电动势为2.95mV,而考铜与纯铂组成的热电偶的热电动势为-4.0mV,则镍铬和考铜组成的热电偶所产生的热电动势应为:2.95-(-4.0)=6.95(mV)均质导体定律由两种均质导体组成的热电偶,其热电动势的大小只与两材料及两接点温度有关,与热电偶的大小尺寸、形状及沿电极各处的温度分布无关。即热电偶必须由两种不同性质的均质材料构成。意义:有助于检验两个热电极材料成分是否相同及材料的均匀性。
为了适应不同生产对象的测温要求和条件,热电偶的结构形式有:普通型热电偶特殊热电偶-铠装型热电偶-薄膜热电偶等。
9.1.2热电偶的结构与种类普通型热电偶结构
优点:测温端热容量小,动态响应快;机械强度高,挠性好,可安装在结构复杂的装置上。铠装型热电偶薄膜热电偶
特点:热接点可以做得很小(μm),具有热容量小、反应速度快(μs)等特点,适用于微小面积上的表面温度以及快速变化的动态温度测量。热电极材料的选取性能稳定温度测量范围广物理化学性能稳定导电率要高,并且电阻温度系数要小材料的机械强度要高,复制性好、复制工艺简单,价格便宜工程用热电偶材料应满足条件:热电势变化尽量大,热电势与温度关系尽量接近线性关系,物理、化学性能稳定,易加工,复现性好,便于成批生产,有良好的互换性。热电偶的种类
国际电工委员会(IEC)向世界各国推荐8种标准化热电偶(已列入工业标准化文件中,具有统一的分度表)。我国已采用IEC标准生产热电偶,并按标准分度表生产与之相配的显示仪表。标准化热电偶的主要性能和特点热电偶名称正热电极负热电极分度号测温范围特点铂铑30-铂铑6铂铑30铂铑6B0~+1700℃(超高温)适用于氧化性气氛中测温,测温上限高,稳定性好。在冶金、钢水等高温领域得到广泛应用。铂铑10-铂铂铑10纯铂S0~+1600℃(超高温)适用于氧化性、惰性气氛中测温,热电性能稳定,抗氧化性强,精度高,但价格贵、热电动势较小。常用作标准热电偶或用于高温测量。镍铬-镍硅镍铬合金镍硅K-200~+1200℃(高温)适用于氧化和中性气氛中测温,测温范围很宽、热电动势与温度关系近似线性、热电动势大、价格低。稳定性不如B、S型热电偶,但是非贵金属热电偶中性能最稳定的一种。镍铬-康铜镍铬合金铜镍合金E-200~+900℃(中温)适用于还原性或惰性气氛中测温,热电动势较其他热电偶大,稳定性好,灵敏度高,价格低。铁-康铜铁铜镍合金J-200~+750℃(中温)适用于还原性气氛中测温,价格低,热电动势较大,仅次于E型热电偶。缺点是铁极易氧化。铜-康铜铜铜镍合金T-200~+350℃(低温)适用于还原性气氛中测温,精度高,价格低。在-200~0℃可制成标准热电偶。缺点是铜极易氧化。8.1.3热电偶的冷端温度补偿当热端温度为t时,分度表所对应的热电势eAB(t,0)与热电偶实际产生的热电势eAB(t,t0)之间的关系可根据中间温度定律得到下式:eAB(t,0)=eAB(t,t0)+eAB(t0,0)由此可见,eAB(t0,0)是冷端温度t0的函数,因此需要对热电偶冷端温度进行处理。热电偶一般做得较短,一般为350~2000mm。在实际测温时,需要把热电偶输出的电势信号传输到远离现场数十米远的控制室里的显示仪表或控制仪表,这样,冷端温度t0比较稳定。(1)热电偶补偿导线解决办法:工程中采用一种补偿导线。在0~100℃温度范围内,要求补偿导线和所配热电偶具有相同的热电特性。解决办法:工程中采用一种补偿导线。常用补偿导线
热电偶类型补偿导线类型补偿导线正极负极铂铑10-铂铜-铜镍合金铜铜镍合金(镍的质量分数为0.6%)镍铬-镍硅I型:镍铬-镍硅镍铬镍硅镍铬-镍硅II型:铜-康铜铜康铜镍铬-康铜镍铬-康铜镍铬康铜铁-康铜铁-康铜铁康铜铜-康铜铜-康铜铜康铜
在实验室及精密测量中,通常把冷端放入0℃恒温器或装满冰水混合物的容器中,以便冷端温度保持0℃。这是一种理想的补偿方法,但工业中使用极为不便。(2)冷端0℃恒温法
当冷端温度t0不等于0℃,需要对热电偶回路的测量电势值eAB(t,t0)加以修正。当工作端温度为t时,分度表可查eAB(t,0)与eAB(t0,0)。根据中间温度定律得到:eAB(t,0)=eAB(t,t0)+eAB(t0,0)(3)冷端温度修正法
例子用镍铬-镍硅热电偶测量加热炉温度。已知冷端温度t0=30℃,测得热电势eAB(t,t0)为33.29mV,求加热炉温度。解:查镍铬-镍硅热电偶分度表得eAB(30,0)1.203mV。可得eAB(t,0)=eAB(t,t0)+eAB(t0,0)=33.29+1.203=34.493mV由镍铬-镍硅热电偶分度表得t=829.8℃。(4)冷端温度自动补偿法(电桥补偿法)8.1.4热电偶测温线路测量单点的温度
特殊情况下,热电偶可以串联或并联使用,但只能是同一分度号的热电偶,且冷端应在同一温度下。如热电偶正向串联,可获得较大的热电势输出和提高灵敏度;在测量两点温差时,可采用热电偶反向串联;利用热电偶并联可以测量平均温度。测量两点间温度差(反向串联)测量平均温度(并联或正向串联)
特点:当有一只热电偶烧断时,难以觉察出来。当然,它也不会中断整个测温系统的工作。优点:热电动势大,仪表的灵敏度大大增加,且避免了热电偶并联线路存在的缺点,可立即可以发现有断路。缺点:只要有一支热电偶断路,整个测温系统将停止工作。8.1.5热电偶的应用常用炉温测量控制系统如图所示。毫伏定值器给出给定温度的相应毫伏值,热电偶的热电势与定值器的毫伏值相比较,若有偏差则表示炉温偏离给定值,此偏差经放大器送入调节器,再经过晶闸管触发器推动晶闸管执行器来调整电炉丝的加热功率,直到偏差被消除,从而实现控制温度。8.2热电阻传感器
热电阻传感器是利用导体的电阻值随温度变化而变化的原理进行测温的。热电阻广泛用来测量-200~850℃范围内的温度,少数情况下,低温可测量至1K,高温达1000℃。标准铂电阻温度计的精确度高,作为复现国际温标的标准仪器。
热电阻的结构
电阻丝采用双线并绕法绕制在具有一定形状的云母、石英或陶瓷塑料支架上,支架起支撑和绝缘作用。1.常用热电阻对用于制造热电阻材料的要求:具有尽可能大和稳定的电阻温度系数和电阻率
R-t关系最好成线性物理化学性能稳定容易加工、价格尽量便宜等。目前最常用的热电阻有铂热电阻和铜热电阻。(1)铂热电阻铂热电阻的特点是精度高、稳定性好、性能可靠,所以在温度传感器中得到了广泛应用。按IEC标准,铂热电阻的使用温度范围为-200~850℃。铂热电阻的特性方程为:在-200~0℃的温度范围内Rt=R0[1+At+Bt2+Ct3(t-100)]在0~850℃的温度范围内Rt=R0(1+At+Bt2)
在ITS—90中,这些常数规定为
A=3.97×10-13/℃
B=-5.85×10-7/℃2
C=-4.22×10-12/℃4
可见:热电阻在温度t时的电阻值与0℃时的电阻值R0有关。目前我国规定工业用铂热电阻有R0=10Ω和R0=100Ω两种,它们的分度号分别为Pt10和Pt100,其中以Pt100为常用。铂热电阻不同分度号亦有相应分度表,即Rt-t的关系表,这样在实际测量中,只要测得热电阻的阻值Rt,便可从分度表上查出对应的温度值。铂电阻分度表(2)铜热电阻
在一些测量精度要求不高且温度较低的场合,可采用铜热电阻进行测温,它的测量范围为-50~150℃。铜热电阻在测量范围内其电阻值与温度的关系几乎是线性的,可近似地表示为Rt=R0(1+αt)α=4.28×10-3/℃
两种分度号:Cu50(R0=50Ω)和Cu100(R0=100Ω)。
铜热电阻的分度表分度号:Cu50温度/℃0102030405060708090电阻/Ω-050.0047.8545.7043.5541.4039.24050.0052.1445.2856.4258.5660.7062.8464.9867.1269.2610071.4073.5475.6877.8379.9882.13铜热电阻的特点铜热电阻的电阻温度系数较大、线性性好、价格便宜。缺点:电阻率较低,电阻体的体积较大,热惯性较大,稳定性较差,在100℃以上时容易氧化,因此只能用于低温及没有浸蚀性的介质中。用热电阻传感器进行测温时,测量电路经常采用电桥电路。热电阻与检测仪表相隔一段距离,因此热电阻的引线对测量结果有较大的影响。热电阻内部引线方式有二线制、三线制和四线制三种。8.2.3热电阻的测量电路内部引线方式两线制这种引线方式简单、费用低,但是引线电阻以及引线电阻的变化会带来附加误差。两线制适于引线不长、测温精度要求较低的场合。三线制用于工业测量,一般精度四线制实验室用,高精度测量热电阻的应用8.3热敏电阻热敏电阻是利用半导体(某些金属氧化物如NiO,MnO2,CuO,TiO2)的电阻值随温度显著变化这一特性制成的一种热敏元件,其特点是电阻率随温度而显著变化。一般测温范围:-50~
+300℃8.3.1热敏电阻的电阻-温度特性大多数:负温度系数。热敏电阻在不同值时的电阻-温度特性,温度越高,阻值越小,且有明显的非线性。NTC热敏电阻具有很高的负电阻温度系数,特别适用于:-100~+300℃之间测温。PTC热敏电阻的阻值随温度升高而增大,且有斜率最大的区域,当温度超过某一数值时,其电阻值朝正的方向快速变化。其用途主要是彩电消磁、各种电器设备的过热保护等。CTR也具有负温度系数,但在某个温度范围内电阻值急剧下降,曲线斜率在此区段特别陡,灵敏度极高。主要用作温度开关。各种热敏电阻的阻值在常温下很大,不必采用三线制或四线制接法,给使用带来方便。热敏电阻的电阻-温度特性曲线8.3.2热敏电阻的应用温度控制
热敏电阻体温表管道流量测量第9章光电式传感器9.1概述9.1.1光电式传感器的类别光电式传感器(或称光敏传感器)是利用光电器件把光信号转换成电信号(电压、电流、电阻等)的装置。按工作原理分类光电效应传感器红外热释电探测器固体图像传感器光纤传感器1、光电效应传感器是应用光敏材料的光电效应制成的光敏器件。光照射到物体上使物体发射电子,或电导率发生变化,或产生光生电动势等等,这些因光照引起物体电学特性改变的现象称为光电效应。2、红外热释电探测器主要是利用辐射的红外光(热)照射材料时引起材料电学性质发生变化或产生热电动势原理制成的一类器件。3、固体图像传感器结构上分为两大类,一类是用CCD电荷耦合器件的光电转换和电荷转移功能制成CCD图像传感器,一类是用光敏二极管与MOS晶体管构成的将光信号变成电荷或电流信号的MOS金属氧化物半导体图像传感器。4、光纤传感器它利用发光管(LED)或激光管(LD)发射的光,经光纤传输到被检测对象,被检测信号调制后,光沿着光导纤维反射或送到光接收器,经接收解调后变成电信号。特点光电式传感器具有结构简单、响应速度快、高精度、高分辨率、高可靠性、抗干扰能力强(不受电磁辐射影响,本身也不辐射电磁波)、可实现非接触式测量等特点可以直接检测光信号,间接测量温度、压力、位移、速度、加速度等其发展速度快、应用范围广,具有很大的应用潜力9.1.2光电式传感器的基本形式由光路及电路两大部分组成光路部分实现被测信号对光量的控制和调制电路部分完成从光信号到电信号的转换四种基本形式透射式反射式辐射式开关式9.2光电效应与光电器件光子是具有能量的粒子,每个光子的能量可表示为光电效应方程光电器件光电器件是将光能转变为电能的一种传感器件。是构成光电式传感器的主要部件。光电器件工件的物理基础:光电效应。光电效应分为:内光电效应、外光电效应9.2.1外光电效应型光电器件当光照射到金属或金属氧化物的光电材料上时,光子的能量传给光电材料表面的电子,如果入射到表面的光能使电子获得足够的能量,电子会克服正离子对它的吸引力,脱离材料表面而进入外界空间,这种现象称为外光电效应。即外光电效应是在光线作用下,电子逸出物体表面的现象。根据外光电效应做出的光电器件有光电管和光电倍增管。1、光电管及其基本特性光电管的伏安特性光电管的光照特性曲线1表示氧铯阴极光电管的光照特性,光电流与光通量呈线性关系。曲线2为锑铯阴极的光电管光照特性,它呈非线性关系光电管的光谱特性不同光电阴极材料的光电管,对同一波长的光有不同的灵敏度;同一种阴极材料的光电管对于不同波长的光的灵敏度也不同,这就是光电管的光谱特性。曲线1、2分别为铯阴极、锑铯阴极对应不同波长光线的灵敏度,3为多种成分(锑、钾、钠、铯等)阴极的光谱特性曲线2、光电倍增管及其基本特性主要参数
倍增系数M阳极电流光电倍增管的电流放大倍数光电阴极灵敏度和光电倍增管总灵敏度暗电流光电倍增管的光谱特性9.2.2内光电效应型光电器件内光电效应是指在光线作用下,物体的导电性能发生变化或产生光生电动势的现象这种效应可分为因光照引起半导体电阻率变化的光电导效应和因光照产生电动势的光生伏特效应两种
内光电效应分类光电导效应在光线作用下,对于半导体材料吸收了入射光子能量,若光子能量大于或等于半导体材料的禁带宽度,就激发出电子-空穴对,使载流子浓度增加,半导体的导电性增加,阻值减低的现象。如光敏电阻光生伏特效应在光线的作用下能够使物体产生一定方向的电动势的现象。如光电池。(1)光敏电阻
1.光敏电阻的结构与工作原理光敏电阴是用半导体材料制成的光电器件。光敏电阻没有极性,使用时既可加直流电压,也可以加交流电压。无光照时,光敏电阻值(暗电阻)很大,电路中电流(暗电流)很小。当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减小,电路中电流迅速增大。一般希望暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高。实际光敏电阻的暗电阻值一般在兆欧量级,亮电阻值在几千欧以下。光敏电阻的结构光敏电阻结构(a)光敏电阻结构;(b)光敏电阻电极;(c)光敏电阻接线图2.光敏电阻的主要参数暗电阻光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。亮电阻光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。光电流亮电流与暗电流之差3、光敏电阻的基本特性伏安特性在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系。图10.9硫化镉光敏电阻的伏安特性光照特性指光敏电阻的光电流I和光照强度之间的关系光敏电阻的光照特性光谱特性光敏电阻的相对光敏灵敏度与入射波长的关系。即光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。光敏电阻的光谱特性频率特性光敏电阻的光电流不能随着光强改变而立刻变化,即光敏电阻产生的光电流有一定的惰性,这种惰性通常用时间常数表示,对应着不同材料的频率特性。光敏电阻的频率特性温度特性光敏电阻和其它半导体器件一样,受温度影响较大。温度变化时,影响光敏电阻的光谱响应、灵敏度和暗电阻。硫化铅光敏电阻受温度影响更大。硫化铅光敏电阻的光谱温度特性(2)光电池光电池是一种直接将光能转换为电能的光电器件。即电源。工作原理:基于“光生伏特效应”。光电池实质上是一个大面积的PN结,当光照射到PN结的一个面,例如P型面时,若光子能量大于半导体材料的禁带宽度,那么P型区每吸收一个光子就产生一对自由电子和空穴,电子-空穴对从表面向内迅速扩散,在结电场的作用下,最后建立一个与光照强度有关的电动势。光敏电阻的应用-火灾探测光电池结构、符号光电池种类
光电池的种类很多,有硅光电池、硒光电池、锗光电池、砷化镓光电池、氧化亚铜光电池等最受人们重视的是硅光电池。因为它具有性能稳定、光谱范围宽、频率特性好、转换效率高、能耐高温辐射、价格便宜、寿命长等特点。它不仅广泛应用于人造卫星和宇宙飞船作为太阳能电池,而且也广泛应用于自动检测和其它测试系统中硒光电池由于其光谱峰值位于人眼的视觉范围,所以在很多分析仪器、测量仪表中也常常用到。光电池基本特性光谱特性光电池对不同波长的光的灵敏度是不同的。硅光电池的光谱特性光照特性光电池在不同光照度下,其光电流和光生电动势是不同的,它们之间的关系就是光照特性硅光电池的光照特性频率特性温度特性是描述光电池的开路电压和短路电流随温度变化的情况。硅光电池的温度特性(3)光敏二极管和光敏三极管光敏二极管工作原理光敏二极管的结构与一般二极管相似、光敏二极管在电路中一般是处于反向工作状态。在没有光照射时,反向电阻很大,反向电流很小,这反向电流称为暗电流,当光照射在PN结上,光子打在PN结附近,使PN结附近产生光生电子和光生空穴对,它们在PN结处的内电场作用下作定向运动,形成光电流。光的照度越大,光电流越大。光敏二极管在不受光照射时处于截止状态,受光照射时处于导通状态。光敏晶体管光敏晶体管与一般晶体管很相似,具有两个PN结,只是它的发射极一边做得很大,以扩大光的照射面积。大多数光敏晶体管的基极无引出线,当集电极加上相对于发射极为正的电压而不接基极时,集电结就是反向偏压,当光照射在集电结时,就会在结附近产生电子—空穴对,光生电子被拉到集电极,基区留下空穴,使基极与发射极间的电压升高,这样便会有大量的电子流向集电极,形成输出电流,且集电极电流为光电流的β倍,所以光敏晶体管有放大作用。NPN型光敏晶体管结构和基本电路
光敏管的基本特性光敏晶体管的光谱特性伏安特性光照特性频率特性光敏二极管和三极管的主要差别光电流光敏二极管一般只有几微安到几百微安,而光敏三极管一般都在几毫安以上,至少也有几百微安,两者相差十倍至百倍。光敏二极管与光敏三极管的暗电流则相差不大,一般都不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五金制品批量采购合同
- 差旅服务人员合同
- 塑料袋出口购销合同
- 月嫂合同中的安全规定
- 书法协议合同适用
- 租赁协议模板脚手架
- 马戏团合作动物表演合同
- 共建美好服务合同
- 严谨策划项目策划服务合同
- 法人向公司借款合同范本填写模板
- 2023年深圳市云端学校应届生招聘教师考试真题
- 店铺三年规划
- 2024年员工绩效考核合同3篇
- 全国园地、林地、草地分等定级数据库规范1123
- 地推活动合同范例
- 2023年国网四川省电力公司招聘笔试真题
- 昆明理工大学《自然语言处理》2022-2023学年第一学期期末试卷
- 陈义小学进城务工人员随迁子女入学工作制度和措施
- 2023-2024学年广东省深圳市龙华区六年级上学期期末英语试卷
- 2024年注册会计师审计考试题及答案
- 小儿急腹症观察和护理
评论
0/150
提交评论