版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛超银中学2024届中考五模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.-2的绝对值是()A.2 B.-2 C.±2 D.2.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m23.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33880亿元4.的负倒数是()A. B.- C.3 D.﹣35.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤6.小明为今年将要参加中考的好友小李制作了一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A. B. C. D.7.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. D.48.的值是A. B. C. D.9.如图,已知正五边形内接于,连结,则的度数是()A. B. C. D.10.下列图形中,主视图为①的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=.12.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.13.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x…-5-4-3-2-1…y…3-2-5-6-5…则关于x的一元二次方程ax2+bx+c=-2的根是______.14.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.15.当x=_____时,分式值为零.16.计算:()•=__.17.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.三、解答题(共7小题,满分69分)18.(10分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.19.(5分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=,cos75°=,tan75°=)20.(8分)如图,在正方形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F.求证:DF2=EF•BF.21.(10分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.22.(10分)如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.23.(12分)先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.24.(14分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;…(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】
根据绝对值的性质进行解答即可【题目详解】解:﹣1的绝对值是:1.故选:A.【题目点拨】此题考查绝对值,难度不大2、C【解题分析】
科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.【题目详解】解:由科学记数法可知:250000m2=2.5×105m2,故选C.【题目点拨】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3、C【解题分析】
由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【题目详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33880亿元,此选项正确;故选C.【题目点拨】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据.4、D【解题分析】
根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.【题目详解】根据倒数的定义得:2×=1.
因此的负倒数是-2.
故选D.【题目点拨】本题考查了倒数,解题的关键是掌握倒数的概念.5、D【解题分析】
根据实数的运算法则即可一一判断求解.【题目详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2=,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.6、C【解题分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:【题目详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解:A、“预”的对面是“考”,“祝”的对面是“成”,“中”的对面是“功”,故本选项错误;B、“预”的对面是“功”,“祝”的对面是“考”,“中”的对面是“成”,故本选项错误;C、“预”的对面是“中”,“祝”的对面是“考”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“祝”的对面是“成”,“考”的对面是“功”,故本选项错误.故选C【题目点拨】考核知识点:正方体的表面展开图.7、A【解题分析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故选A.考点:1.旋转;2.勾股定理.8、D【解题分析】
根据特殊角三角函数值,可得答案.【题目详解】解:,故选:D.【题目点拨】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.9、C【解题分析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【题目详解】∵五边形为正五边形∴∵∴∴故选:C.【题目点拨】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.10、B【解题分析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.二、填空题(共7小题,每小题3分,满分21分)11、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解题分析】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【题目详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.12、【解题分析】
根据正弦和余弦的概念求解.【题目详解】解:∵P是∠α的边OA上一点,且P点坐标为(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案为【题目点拨】此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.13、x1=-4,x1=2【解题分析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.14、1.【解题分析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.15、﹣1.【解题分析】试题解析:分式的值为0,则:解得:故答案为16、1【解题分析】试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=.17、8π【解题分析】试题分析:∵弧的半径为24,所对圆心角为60°,∴弧长为l==8π.故答案为8π.【考点】弧长的计算.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)6【解题分析】
(1)连接CD,证明即可得到结论;(2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.【题目详解】(1)证明:连接CD,∵∴∵∴.(2)设圆O的半径为,,设.【题目点拨】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.19、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解题分析】
(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).【题目详解】解:(1)如图1中,当点E在BC上时.
∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),∴EC的最小值即为线段CM的长(垂线段最短),设E′N=CN=a,则AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′•cos30°=,∴CE的最小值为.【题目点拨】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20、见解析【解题分析】
证明△FDE∽△FBD即可解决问题.【题目详解】解:∵四边形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共边,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四边形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF•BF.【题目点拨】本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.21、(1)见解析;(2)①120°;②45°【解题分析】
(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;
(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【题目详解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为45°.【题目点拨】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.22、(1)y=12x2-x-4(2)点M的坐标为(2,-4)(3)-83【解题分析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;
(2)连接OM,设点M的坐标为m,12m2-m-4.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM(3)抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;设点Pn,12n2-n-4,过P作PQ垂直于x轴,垂足为Q.证△PAQ∽△C1AD,得PQC1【题目详解】(1)抛物线的解析式为y=12(x-4)(x+2)=12x(2)连接OM,设点M的坐标为m,1由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,设点Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴点P的横坐标为-83或-4【题目点拨】本题考核知识点:二次函数综合运用.解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.23、原式=【解题分析】
括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【题目详解】原式===,当a=1+,b=1﹣时,原式==.【题目点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4月九年级物理教学工作计划范文
- 2024年员工个人工作计划模板
- 高二德育工作计划范本
- 社区健康教育工作思路的工作计划
- 2024年幼儿园党支部工作计划开头范文
- 2024年血库护士上半年工作总结以及下半年工作计划
- 岭南师范学院《普通物理实验(电磁学)》2021-2022学年第一学期期末试卷
- 聊城大学东昌学院《中国现代文学思潮史》2022-2023学年第一学期期末试卷
- 幼儿园中班学年工作计划范文
- 高中教师工作计划个人范文
- 不锈钢管道焊接工艺标准规范标准
- 工程结算表格
- 物业工程部年度预算模板(5附表)
- EPS应急电源设计选型-0607[1]
- 37-风湿病科--大偻(强直性脊柱炎)中医诊疗方案(2021年版)
- 《Monsters怪兽》中英对照歌词
- 人教部编版小学道德与法治 我们受特殊保护第二课时 教案 教学设计
- 2022年教科版《高中物理必修2》编写说明与教材分析2
- 《魏公子列传》知识点
- 文案策划绩效考核表.doc
- 长隆创始人苏志刚老婆
评论
0/150
提交评论