2024届黑龙江省绥滨农场校中考联考数学试卷含解析_第1页
2024届黑龙江省绥滨农场校中考联考数学试卷含解析_第2页
2024届黑龙江省绥滨农场校中考联考数学试卷含解析_第3页
2024届黑龙江省绥滨农场校中考联考数学试卷含解析_第4页
2024届黑龙江省绥滨农场校中考联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省绥滨农场校中考联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是()A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m2.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80° B.90° C.100° D.102°3.下列命题中真命题是()A.若a2=b2,则a=bB.4的平方根是±2C.两个锐角之和一定是钝角D.相等的两个角是对顶角4.=()A.±4 B.4 C.±2 D.25.若a+|a|=0,则等于()A.2﹣2a B.2a﹣2 C.﹣2 D.26.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小7.若△÷,则“△”可能是()A. B. C. D.8.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10119.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90 B.中位数是90 C.平均数是90 D.极差是1510.估算的值是在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间二、填空题(共7小题,每小题3分,满分21分)11.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.12.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.13.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2;

⑤3a+c<1.其中,正确结论的序号是________________.14.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.15.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.16.分解因式:ab2﹣9a=_____.17.因式分解:__________.三、解答题(共7小题,满分69分)18.(10分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).19.(5分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有_____;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.20.(8分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.21.(10分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.22.(10分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.求S与x的函数关系式及x值的取值范围;要围成面积为45m1的花圃,AB的长是多少米?当AB的长是多少米时,围成的花圃的面积最大?23.(12分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.24.(14分)(1)计算:(a-b)2-a(a-2b);(2)解方程:=.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.D.立交桥总长为:故正确.故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.2、A【解题分析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.3、B【解题分析】

利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【题目详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【题目点拨】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.4、B【解题分析】

表示16的算术平方根,为正数,再根据二次根式的性质化简.【题目详解】解:,故选B.【题目点拨】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.5、A【解题分析】

直接利用二次根式的性质化简得出答案.【题目详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【题目点拨】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.6、B【解题分析】

根据倒数的定义解答即可.【题目详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【题目点拨】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.7、A【解题分析】

直接利用分式的乘除运算法则计算得出答案.【题目详解】。故选:A.【题目点拨】考查了分式的乘除运算,正确分解因式再化简是解题关键.8、C【解题分析】解:305.5亿=3.055×1.故选C.9、C【解题分析】

由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【题目详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C.故选C.10、C【解题分析】

求出<<,推出4<<5,即可得出答案.【题目详解】∵<<,∴4<<5,∴的值是在4和5之间.故选:C.【题目点拨】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】

判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【题目详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【题目点拨】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.12、1-1【解题分析】

设两个正方形的边长是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入阴影部分的面积是(y﹣x)x求出即可.【题目详解】设两个正方形的边长是x、y(x<y),则x2=1,y2=9,x,y=1,则阴影部分的面积是(y﹣x)x=(11.故答案为11.【题目点拨】本题考查了二次根式的应用,主要考查学生的计算能力.13、②③④⑤【解题分析】试题解析:∵二次函数与x轴有两个交点,∴b2-4ac>1,故①错误,观察图象可知:当x>-1时,y随x增大而减小,故②正确,∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,∴x=1时,y=a+b+c<1,故③正确,∵当m>2时,抛物线与直线y=m没有交点,∴方程ax2+bx+c-m=1没有实数根,故④正确,∵对称轴x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正确,故答案为②③④⑤.14、9.2×10﹣1.【解题分析】

根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【题目详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为:9.2×10﹣1.【题目点拨】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.15、2【解题分析】

根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【题目详解】由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案为2.【题目点拨】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16、a(b+3)(b﹣3).【解题分析】

根据提公因式,平方差公式,可得答案.【题目详解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).【题目点拨】本题考查了因式分解,一提,二套,三检查,分解要彻底.17、【解题分析】

先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【题目详解】解:原式,故答案为:【题目点拨】本题考查提公因式,熟练掌握运算法则是解题关键.三、解答题(共7小题,满分69分)18、(1)见解析;(2)【解题分析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积=S扇形ODE=.19、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).【解题分析】

(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD的“关联点”为P2,P3;(2)作正方形ABCD的内切圆和外接圆,∴OF=1,,.∵E是正方形ABCD的“关联点”,∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),∵点E在直线上,∴点E在线段FG上.分别作FF’⊥x轴,GG’⊥x轴,∵OF=1,,∴,.∴.根据对称性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如图4中,∵,,∴.∴.综上:.【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.20、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).【解题分析】

(1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;

(1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;

(3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;

(4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.【题目详解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直线AC的函数解析式是(1)设P点的横坐标为x(﹣1≤x≤1),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P点在E点的上方,∴当时,PE的最大值△ACE的面积最大值(3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,最小值求得M(1,﹣1),(4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,于是可得F1(1,0),F1(﹣3,0),如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,再根据|HA|=|CF|,求出综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.【题目点拨】属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.21、(1)50;(2)240;(3).【解题分析】

用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【题目详解】解:(1);(2)样本中喜爱看电视的人数为(人,,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率.【题目点拨】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.22、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解题分析】

(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论