第5章多元统计分析第四版-_第1页
第5章多元统计分析第四版-_第2页
第5章多元统计分析第四版-_第3页
第5章多元统计分析第四版-_第4页
第5章多元统计分析第四版-_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章

主成分分析7/1/20211中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束主成分分析(principal

components

analysis)也称主分分析,最早可追溯到K.Pearson于1901年开创的非随机变量的多元转化分析;是由霍特林(Hotelling)于1933年推广到随机变量。主成分分析是利用降维的思想,在损失很少信息的前提下把多个指标转化为几个综合指标的多元统计方法。通常把转化生成的综合指标称之为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,这就使得主成分比原始变量具有某些更优越的性能。这样在研究复杂问题时就可以只考虑少数几个主成分而不至于损失太多信息,从而更容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时使问题得到简化,提高分析效率。第5章

主成分分析7/1/20212中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.1

主成分分析的基本原理§5.2

总体主成分及其性质§5.3

样本主成分的导出§5.4

有关问题的讨论§5.5

主成分分析步骤及框图§5.6

主成分分析的上机实现§5.1

主成分分析的基本原理7/1/20213中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.1.1

主成分分析的基本思想§5.1.2

主成分分析的基本理论§

5.1.3主成分分析的几何意义§5.1.1

主成分分析的基本思想7/1/20214中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束在对某一事物进行实证研究中,为了更全面、准确地反映出事物的特征及其发展规律,人们往往要考虑与其有关系的多个指标,这些指标在多元统计中也称为变量。这样就产生了如下问题:一方面人们为了避免遗漏重要的信息而考虑尽可能多的指标,而另一方面随着考虑指标的增多增加了问题的复杂性,同时由于各指标均是对同一事物的反映,不可避免地造成信息的大量重叠,这种信息的重叠有时甚至会抹杀事物的真正特征与内在规律。基于上述问题,人们就希望在定量研究中涉及的变量较少,而得到的信息量又较多。主成分分析正是研究如何通过原来变量的少数几个线性组合来解释原来变量绝大多数信息的一种多元统计方法。§5.1.1

主成分分析的基本思想7/1/20215中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束既然研究某一问题涉及的众多变量之间有一定的相关性,就必然存在着起支配作用的共同因素,根据这一点,通过对原始变量相关矩阵或协方差矩阵内部结构关系的研究,利用原始变量的线性组合形成几个综合指标(主成分),在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾。一般地说,利用主成分分析得到的主成分与原始变量之间有如下基本关系:每一个主成分都是各原始变量的线性组合主成分的数目大大少于原始变量的数目§5.1.1

主成分分析的基本思想7/1/20216中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束主成分保留了原始变量绝大多数信息各主成分之间互不相关通过主成分分析,可以从事物之间错综复杂的关系中找出一些主要成分,从而能有效利用大量统计数据进行定量分析,揭示变量之间的内在关系,得到对事物特征及其发展规律的一些深层次的启发,把研究工作引向深入。§5.1.2

主成分分析的基本理论设对某一事物的研究涉及个

指标,分别用示,这个

指标构成的

维随机向量为表。设随机向量的均值为,协方差矩阵为。对进行线性变换,可以形成新的综合变量,用表示,也就是说,新的综合变量可以由原来的变量线性表示,即满足下式:(5.1)7/1/20217中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.1.2

主成分分析的基本理论由于可以任意地对原始变量进行上述线性变换,由不同的线性变换得到的综合变量

的统计特性也不尽相同。因此为了取得较好的效果,我们总是希望

的方差尽可能大且各

之间互相独立,由于=而对任给的常数

,有7/1/20218中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.1.2

主成分分析的基本理论因此对

不加限制时,可使

任意增大,问题将变得没有意义。我们将线性变换约束在下面的原则之下:,1.2.的一切满足原则1的线性组合中方差最不相关的

所有线性组合中方差最3.是大者;是与大者;…,是与

都不相关的

的所有线性组合中方差最大者。7/1/20219中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.1.2

主成分分析的基本理论基于以上三条原则决定的综合变量

分别称为原始变量的第一、第二、…、第

个主成分。其中,各综合变量在总方差中占的比重依次递减,在实际研究工作中,通常只挑选前几个方差最大的主成分,从而达到简化系统结构,抓住问题实质的目的。7/1/202110中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.1.3

主成分分析的几何意义由第一节的介绍我们知道,在处理涉及多个指标问题的时候,为了提高分析的效率,可以不直接对

个指标构成的

维随机向量

进行分析,而是先对向量

进行线性变换,形成少数几个新的综合变量

,使得各综合变量之间相互独立且能解释原始变量尽可能多的信息,这样在以损失很少部分信息为代价的前提下,达到简化数据结构,提高分析效率的目的。这一节,我们着重讨论主成分分析的几何意义,为了方便,我们仅在二维空间中讨论主成分的几何意义,所得结论可以很容易地扩展到多维的情况。7/1/202111中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束设有

个样品,每个样品有两个观测变量

,这样,在由变量

组成的坐标空间中,个样品点散布的情况如带状,见图5-1。图5-17/1/202112中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束由图可以看出这

个样品无论沿

轴方向还是沿有较大的离散性,其离散程度可以分别用观测变量轴方向均的方差和的方差定量地表示,显然,若只考虑和中的任何一个,原始数据中的信息均会有较大的损失。我们的目的是考虑和的线性组合,使得原始样品数据可以由新的变量和来刻画。在几何上表示就是将坐标轴按逆时针方向旋转角度,得到新坐标轴和,坐标旋转公式如下:7/1/202113中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束其矩阵形式为:其中,为旋转变换矩阵,由上式可知它是正交阵,即满足7/1/202114中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束经过这样的旋转之后,个样品点在轴上的离散程度最大,变量代表了原始数据绝大部分信息,这样,有时在研究实际问题时,即使不考虑变量也无损大局。因此,经过上述旋转变换就可以把原始数据的信息集中到轴上,对数据中包含的信息起到了浓缩的作用。主成分分析的目的就是找出转换矩阵,而主成分分析的作用与几何意义也就很明了了。7/1/202115中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.2

总体主成分及其性质由上面的讨论可知,求解主成分的过程就是求满足三条原则的原始变量

的线性组合的过程。本节先从总体出发,介绍求解主成分的一般方法及主成分的性质,然后介绍样本主成分的导出。7/1/202116中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束主成分分析的基本思想就是在保留原始变量尽可能多的信息的前提下达到降维的目的,从而简化问题的复杂性并抓住问题的主要矛盾。而这里对于随机变量而言,其协方差矩阵或相关矩阵正是对各变量离散程度与变量之间的相关程度的信息的反应,而相关矩阵不过是将原始变量标准化后的协方差矩阵。我们所说的保留原始变量尽可能多的信息,也就是指的生成的较少的综合变量(主成分)的方差和尽可能接近原始变量方差的总和。因此在实际求解主成分的时候,总是从原始变量的协方差矩阵或相关矩阵的结构分析入手。一般地说,从原始变量的协方差矩阵出发求得的主成分与从原始变量的相关矩阵出发求得的主成分是不同的。下面我们分别就协方差矩阵与相关矩阵进行讨论。7/1/202117中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.2.1从协方差矩阵出发求解主成分引理:设矩阵

,将排列,不妨设的特征值

依大小顺序,

矩阵各特征值对应的标准正交特征向量,则对任意向量,有:(5.2)7/1/202118中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束证明:由引论理论知,对于任意常向量

,有:又

为标准正交特征向量,于是:此时:(5.3)结论:

设随机向量的协方差矩阵为

,为

的特征值,

为矩阵

各特征值对应的标准正交特征向量,则第

i个主成分为:7/1/202119中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束且:令

,则有类似的,有7/1/202120中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束由以上结论,我们把

的协方差矩阵

的非零特分别征值

对应的标准化特征向量作为系数向量,分别称为随机向量

的第一主成分、第二主成分、…、第

主成分。

的分量主成依次是

的第一主成分、第二主成分、…、第分的充分必要条件是:,即

阶正交阵;的分量之间互不相关;的

个分量是按方差由大到小排列。7/1/202121中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.2.2

主成分的性质性质1

的协方差阵为对角阵

。这一性质可由上述结论容易得到,证明略。性质2

,有证明:记则有

于是7/1/202122中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束定义

5.1

为第

个主成分

的方差贡献率,称

为主成分

的累积贡献率。由此进一步可知,主成分分析是把个随机变量的总方差分解为个不相关的随机变量的方差之和,使第一主成分的方差达到最大,第一主成分是以变化最大的方向向量各分量为系数的原始变量的线性函数,最大方差为

表明了

的方差在全部方差中的比值,称

为第一主成分的贡献率。这个值越大,表明

这个新变量综合也即由

的差异来解释随机向量信息的能力越强,的差异的能力越强。7/1/202123中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束正因如此,才把

称为

的主成分。进而我们就更清楚为什么主成分的名次是按特征根

取值的大小排序的。进行主成分分析的目的之一是为了减少变量的个数,所以一般不会取

个主成分,而是取

个主成分,取多少比较合适,这是一个很实际的问题,通常以所取

使得累积贡献率达到85%以上为宜,即(5.4)这样,既能使损失信息不太多,又达到减少变量,简化问题的目的。另外,选取主成分还可根据特征值的变化来确定。图5-2为SPSS统计软件生成的碎石图。7/1/202124中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束图5-2由图5-2可知,第二个及第三个特征值变化的趋势已经开始趋于平稳,所以,取前两个或是前三个主成分是比较合适的。这种方法确定的主成分个数与按累积贡献率确定的主成分个数往往是一致的。在实际应用中有些研究工作者习惯于保留特征值大于1的那些主成分,但这种方法缺乏完善的理论支持。在大多数情况下,当

时即可使所选主成分保持信息总量的比重达到85%以上。7/1/202125中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束定义5.2

个主成分

与原始变量

的相关系数

称做因子负荷量。因子负荷量是主成分解释中非常重要的解释依据,因子负荷量的绝对值大小刻画了该主成分的主要意义及其成因。在下一章因子分析中还将对因子负荷量的统计意义给出更详细的解释。由下面的性质我们可以看到因子负荷量与系数向量成正比。性质37/1/202126中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束(5.5)§5.3.1

总体主成分由性质3知因子负荷量

与向量系数

成正比,与

的标准差成反比关系,因此,绝不能将因子负荷量与向量系数混为一谈。在解释主成分的成因或是第个变量对第个主成分的重要性时,应当根据因子负荷量而不能仅仅根据

的变换系数

。7/1/202127中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束性质4(5.6)证明:由性质3有(5.7)性质5证明:因为

向量是随机向量

的线性组合,因此

也可以精确表示成的全相关系数的平方和等于1,而因为的线性组合。由回归分析知识知,

与之间互不相关,所以

的全相关系数的平方和也就是

,因此,性质5成立。7/1/202128中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束的全相关系数平方和称定义5.3

与前

个主成分为对原始变量

的方差贡献率

,即(5.8)这一定义说明了前

个主成分提取了原始变量

的信息,由此我们可以判断我们提取的主成分说明原始变量的能力。7/1/202129中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.2.3从相关阵出发求解主成分考虑如下的数学变换:令:其中,与分别表示变量的期望与方差。于是有令:于是,对原始变量进行标准化:7/1/202130中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束经过上述标准化后,显然有由于上面的变换过程,原始变量

的相关阵实际上就是对原始变量标准化后的协方差矩阵,因此,由相关矩阵求主成分的过程与主成分个数的确定准则实际上是与由协方差矩阵出发求主成分的过程与主成分个数的确定准则是相一致的,在此不再赘述。仍用

分别表示相关阵

的特征值与对应的标准正交特征向量,此时,求得的主成分与原始变量的关系式为:(5.9)7/1/202131中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.2.4由相关阵求主成分时主成分性质的简单形式由相关阵出发所求得主成分依然具有上面所述的各种性质,不同的是在形式上要简单,这是由相关阵的特性决定的。我们将由相关阵得到的主成分的性质总结如下:1.

的协方差矩阵为对角阵

;3.第

个主成分的方差占总方差的比例,即第

个主成分的方差贡献率为

,前

个主成分的累积方差贡献率为

;7/1/202132中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.3

样本主成分的导出记在实际研究工作中,总体协方差阵与相关阵通常是未知的,于是需要通过样本数据来估计。设有个样品,每个样品有个指标,这样共得到个数据,原始资料矩阵如下:7/1/202133中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束为样本协方差矩阵,作为总体协方差阵

的无偏估计,

是样本相关矩阵,为总体相关矩阵的估计。由前面的讨论知,若原始资料

阵是经过标准化处理的,则由矩阵

求得的协方差阵就是相关矩阵,即与完全相同。因为由协方差矩阵求解主成分的过程与同相关矩阵出发求解主成分的过程是一致的,下面我们仅介绍由相关阵

出发求解主成分。根据总体主成分的定义,主成分

的协方差是:其中

为对角阵7/1/202134中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束假定资料矩阵X为已标准化后的数据矩阵,则可由相关矩阵代替协方差矩阵,于是上式可表示为7/1/202135中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束因为

为正定矩阵,所以其特征根都是非负实数,将它们依大小顺序排列为

,则相对于,其相应的特征向量记的方差为:同理有即对于有最大方差,有次大方差,……,并且,协方差为:7/1/202136中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束由此可知新的综合变量(主成分)且

的方差为

,则彼此不相关,并分别称为第一、第二、……、第

个主成分。由上述求主成分的过程可知,主成分在几何图形中的方向实际上就是

的特征向量的方向,主成分的方差贡献就等于R的相应特征值。这样,我们在利用样本数据求解主成分的过程实际上就转化为求相关阵或协方差阵的特征值和特征向量的过程。7/1/202137中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.47/1/202138中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束有关问题的讨论§5.4.1关于由协方差矩阵或相关矩阵出发求解主成分§5.4.2主成分分析不要求数据来自于正态总体§5.4.3主成分分析与重叠信息§5.4.17/1/202139中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束关于由协方差矩阵或相关矩阵出发求解主成分由前面的讨论可知求解主成分的过程实际就是对矩阵结构进行分析的过程,也就是求解特征值的过程。在实际分析过程中我们可以从原始数据的协方差矩阵出发,也可以从原始数据的相关矩阵出发,其求主成分的过程是一致的。但是,从协方差阵出发和从相关阵出发所求得的主成分一般来说是有差别的,而且这种差别有时候还很大。§5.4.17/1/202140中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束关于由协方差矩阵或相关矩阵出发求解主成分一般而言,对于度量单位不同的指标或是取值范围彼此差异非常大的指标,我们不直接由其协方差矩阵出发进行主成分分析,而应该考虑将数据标准化。比如,在对上市公司的财务状况进行分析时,常常会涉及到利润总额、市盈率、每股净利率等指标,其中利润总额取值常常从几十万到上百万,市盈率取值一般从五到六、七十之间,而每股净利率在1以下,不同指标取值范围相差很大,这时若是直接从协方差矩阵入手进行主成分分析,明显利润总额的作用将起到重要支配作用,而其它两个指标的作用很难在主成分中体现出来,此时应该考虑对数据进行标准化处理。§5.4.17/1/202141中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束关于由协方差矩阵或相关矩阵出发求解主成分但是,对原始数据进行标准化处理后倾向于各个指标的作用在主成分的构成中相等。由上面的例子我们看到,对于取值范围相差不大或是度量相同的指标进行标准化处理后,其主成分分析的结果仍与由协方差阵出发求得的结果有较大区别。其原因是由于对数据进行标准化的过程实际上也就是抹杀原始变量离散程度差异的过程,标准化后的各变量方差相等均为1,而实际上方差也是对数据信息的重要概括形式,也就是说,对原始数据进行标准化后抹杀了一部分重要信息,因此才使得标准化后各变量在对主成分构成中的作用趋于相等。由此看来,对同度量或是取值范围在同量级的数据,还是直接从协方差矩阵求解主成分为宜。§5.4.17/1/202142中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束关于由协方差矩阵或相关矩阵出发求解主成分对于从什么出发求解主成分,现在还没有一个定论,但是我们应该看到,不考虑实际情况就对数据进行标准化处理或者直接从原始变量的相关矩阵出发求解主成分是有其不足之处的,这一点一定要引起注意。建议在实际工作中分别从不同角度出发求解主成分并研究其结果的差别,看看是否发生明显差异且这种差异产生的原因在何处,以确定用哪种结果更为可信。§5.4.2

主成分分析不要求数据来自于正态总体7/1/202143中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束由上面的讨论可知,无论是从原始变量协方差矩阵出发求解主成分,还

是从相关矩阵出发求解主成分,均没有涉及到总体分布的问题。也就是说,

与很多多元统计方法不同,主成分分析不要求数据来自于正态总体。实际上,主成分分析就是对矩阵结构的分析,其中主要用到的技术是矩阵运算的技术

及矩阵对角化和矩阵的谱分解技术。我们知道,对多元随机变量而言,其协

方差矩阵或是其相关矩阵均是非负定的,这样,我们就可以按照求解主成分

的步骤求出其特征值、标准正交特征向量,进而求出主成分,达到缩减数据

维数的目的。同时,由主成分分析的几何意义可以看到,对来自多元正态总

体的数据,我们得到了合理的几何解释,即主成分就是按数据离散程度最大

的方向进行坐标轴旋转。主成分分析的这一特性大大扩展了其应用范围,对多维数据,只要是涉及降维的处理,我们都可以尝试用主成分分析,而不用花太多精力考虑其分布情况。§5.4.3主成分分析与重叠信息7/1/202144中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束首先应当认识到主成分分析方法适用于变量之间存在较强相关性的数据,如果原始数据相关性较弱,运用主成分分析后不能起到很好的降维作用,即所得的各个主成分浓缩原始变量信息的能力差别不大。一般认为当原始数据大部分变量的相关系数都小于0.3时,运用主成分分析不会取得很好的效果。很多研究工作者在运用主成分分析方法时,都或多或少存在着对主成分分析去除原始变量重叠信息的期望,这样,在实际工作中初始就可以把与某一研究问题相关而可能得到的变量(指标)都纳入分析过程,再用少数几个主成分浓缩这些有用信息(假定已剔除了重叠信息),然后对主成分进行深入分析。在对待重叠信息方面,生成的新的综合变量(主成分)是有效剔除了原始变量中的重叠信息,还是仅仅按原来的模式将原始信息中的绝大部分用几个不相关的新变量表示出来,这一点还值得讨论。§5.4.3主成分分析与重叠信息为说明这个问题,我们有必要再回顾一下主成分的求解过程,我们仅就从协方差矩阵出发求主成分的过程予以说明,对相关阵有类似的情况。对于维指标的情况,我们得到其协方差矩阵如下:现在考虑一种极端情况,即有两个指标完全相关,不妨设第一个指标在进行主成分分析时考虑了两次。则协方差矩阵变为:7/1/202145中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.4.3主成分分析与重叠信息此时进行主成分分析的时候实际上是由

维矩阵

进行。

的行列式的值为零但仍满足非负定,只不过其最小的特征值为0,由而是变为出发求解主成分,其方差总和不再是,也就是说,第一个指标在分析过程中起到了加倍的作用,其重叠信息完全象其他指标提供的信息一样在起作用。7/1/202146中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束7/1/2021中国人民大学六西格玛质量管理研究中心47目录 上页

下页

返回

结束§5.4.3主成分分析与重叠信息这样求得的主成分已经与没有第一个指标重叠信息时不一样了,因为主成分方差的总和已经变为

而不是

,每个主成分解释方差的比例也相应发生变化,而整个分析过程没有对重叠信息作任何特殊处理。也就是说,由于对第一个指标罗列了两次,其在生成的主成分构成中也起到了加倍的作用。这一点是尤其应该引起注意的,这意味着主成分分析对重叠信息的剔除是无能为力的,同时主成分分析还损失了一部分信息。对此文献[4]举例进行了说明。这就告诉我们在实际工作中,在选取初始变量进入分析时应该小心,对原始变量存在多重共线性的问题,在应用主成分分析方法时一定要慎重。应该考虑所选取的初始变量是否合适,是否真实地反映了事物的本来面目,如果是出于避免遗漏某些信息而特意选取了过多的存在重叠信息的变量时,就要特别注意应用主成分分析所得到的结果。§5.4.3主成分分析与重叠信息如果所得到的样本协方差矩阵(或是相关阵)最小的特征值接近于0,那么就有(5.10)进而推出(5.11)7/1/202148中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束这就意味着,中心化以后的原始变量之间存在着多重共线性,即原始变量存在着不可忽视的重叠信息。因此,在进行主成分分析得出协方差阵或是相关阵发现最小特征根接近于零时,应该注意对主成分的解释,或者考虑对最初纳入分析的指标进行筛选,由此可以看出,虽然主成分分析不能有效地剔除重叠信息,但它至少可以发现原始变量是否存在着重叠信息,这对我们减少分析中的失误是有帮助的。§5.5

主成分分析步骤及框图7/1/202149中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.5.1主成分分析步骤§5.5.2主成分分析的逻辑框图§5.5.17/1/202150中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束主成分分析步骤由上面讨论大体上已经可以明了进行主成分分析的步骤,对此进行归纳如下:根据研究问题选取初始分析变量;根据初始变量特性判断由协方差阵求主成分还是由相关 阵求主成分;求协差阵或相关阵的特征根与相应标准特征向量;判断是否存在明显的多重共线性,若存在,则回到第一 步;得到主成分的表达式并确定主成分个数,选取主成分;结合主成分对研究问题进行分析并深入研究。§5.5.2主成分分析的逻辑框图特征值标准正交特征向量是否有接近0的情况是其他处理否主成分对主成分进行分析深入分析选择初始变量度量或取值范围相同?否对比(否)分析相关阵是分析协方差阵主成分分析的逻辑框图见图5-3:7/1/202151中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束§5.6主成分分析的上机实现7/1/202152中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束SPSS软件FACTOR模块提供了主成分分析的功能。下面先以

SPSS软件包自带的数据Employee

data.sav为例介绍主成分分析的上机实现方法,在SPSS软件的安装目录下可以找到该数据集;然后,我们举一个实际的例子介绍主成分分析的具体应用。【例5.1】数据集Employee

data为Midwestern银行在1969-1971年之间雇员情况的数据,共包括474条观测及如下10个变量:Id(观测号)sGender(性别)sBdate(出生日期)s

Educ(受教育程度(年数))sJobcat(工作种类)sSalary(目前年薪)sSalbegin(开始受聘时的年薪)sJobtime(受雇时间(月))sPrevexp(受雇以前的工作时间(月))sMinority(是否少数民族)。下面我们用主成分分析方法处理该数据,以期用少数变量来描述该地区居民的雇佣情况。进入SPSS软件,打开数据集Employeedata.sav。依次点选Analyze→Data

Reduction→Factor….进入FactorAnalysis(因子分析)对话框。(在SPSS软件中,主成分分析与因子分析均在FactorAnalysis模块中完成。此时,数据集Employeedata.sav中的变量名均已显示在左边的窗口中,依次选中变量educ、salary、salbegin、jobtime、prevexp并点向右的箭头按钮,这五个变量便进入variables窗口(此时若选中variables窗口中的变量,则窗口左侧的箭头按钮即转向左侧,点此按钮即可剔除所选中变量)。点击右侧的OK按钮,即可得到如下输出结果5-1。7/1/202153中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束输出结果5-1(2)输出结果5-1(1)7/1/202154中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束输出结果5-1(3)7/1/202155中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束其中Communalities给出了该次分析从每个原始变量中提取的信息,表格下面的注示表明,该次分析是用Factor

analysis模块默认的信息提取方法即主成分分析完成的。可以看到除受教育程度信息损失较大外,主成分几乎包含了各个原始变量至少90%的信息。Total

Variance

Explained表则显示了各主成分解释原始变量总方差的情况,SPSS默认保留特征根大于1的主成分,在本例中看到当保留3个主成分为宜,这3个主成分集中了原始5个变量信息的90.66%,可见效果是比较好的。实际上,主成分解释总方差的百分比也可以由Communalities表中计算得出,即(0.896+0.916+0.999+0.968+0.754)/5=90.66%。Component

Matrix表中给出了标准化原始变量用求得的主成分线性表示的近似表达式,我们以表中Current

Salary一行为例,不妨用

来表示各个主成分,则由Component

Matrix表可以得到:标准化的salary7/1/202156中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束在上面的主成分分析中,SPSS默认是从相关阵出发求解主成分,且默认保留特征根大于1的主成分,实际上,对主成分的个数我们可以自己确定,方法为:进入FactorAnalysis对话框并选择好变量之后,点击Extraction选项,在弹出的对话框中有一个Extract选择框,默认是选择Eigenvaluesover1也就是保留特征根大于1的主成分,我们可以输入别的数值来改变SPSS软件保留特征根的大小;另外,还可以选择NumberofFactors选项直接确定主成分的个数。在实际进行主成分分析时可以先按照默认设置做一次主成分,然后根据输出结果确定应保留主成分的个数,用该方法进行设定后重新分析。因为我们上面的结果是默认从相关阵出发得到的,而由相关阵出发求得的主成分其性质有简单的表达形式,我们可以方便地加以验证。7/1/202157中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束由Component

Matrix中的结果可以得到:=第一主成分的方差,这就验证了性质4。又有:这恰好与Communalities表中三个主成分提取salary变量的信息相等。我们重做一遍主成分分析,此次将5个主成分全部保留,得到Component

Matrix表如输出结果5-2:7/1/202158中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束输出结果5-2可以看到前三个主成分的相应结果与输出结果5-1中的对应部分结果是一致的。对上表中结果有如下关系式:7/1/202159中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束这就验证了性质5。由此表还可以得到标准化原始变量用各主成分线性表示的精确的表达式,以仍以Current

Salary为例,有:标准化的salary7/1/202160中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束7/1/2021中国人民大学六西格玛质量管理研究中心62目录 上页

下页

返回

结束例5.2在企业经济效益的评价中,设计的指标往往很多。为了简化系统结构,抓住经济效益评价中的主要问题,我们可由原始数据矩阵出发求主成分。在对我国部分省、市、自治区独立核算的工业企业的经济效益评价中,涉及到9项指标,原始数据见表5-1,即样品数n=28,变量数p=9。中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束63100元固定100元100元工业100固定资产资产原值资金实总产值实100元销售收每吨标准煤每千瓦时电全员劳动生100元流动原值实现值实现利税现利税现利税(入实现利税实现工业产力实现工业产率(元/人资金实现产(%)(%)(%)%)(%)值(元)产值(元).年)值(元)北京(1

)119

.

2930

.

9829

.

9225

.

9715

.

4821783

.

4121006296

.

7天津(2

)143

.

9831

.

5930

.

2121

.

9412

.

2928524

.

2920254363

.

1河北(3

)94

.

817

.

217

.

9518

.

149

.

3711672

.

0312607322

.

2山西(4

)65

.

811

.

0811

.

0612

.

1516

.

848

.

821

.

6510166284

.

7内蒙(5

)54

.

799

.

249

.

5416

.

866

.

278941

.

87564225

.

4辽宁(6

)94

.

5121

.

1222

.

8322

.

3511

.

2814162

.

3613

.

386311

.

7吉林(7

)80

.

4913

.

3613

.

7616

.

67

.

1413062

.

079400274

.

1黑龙江(8

)75

.

8615

.

8216

.

6720

.

8610

.

3712672

.

269830267上海(9

)187

.

7945

.

939

.

7724

.

4415

.

0943464

.

1131246418

.

6江苏(10

)205

.

9627

.

6522

.

5813

.

427

.

8132024

.

6923377407

.

2浙江(11

)207

.

4633

.

0625

.

7815

.

949

.

2838114

.

1922054385

.

5安徽(12

)110

.

7820

.

720

.

1218

.

696

.

614682

.

2312578341

.

1福建(13

)7/1/2021

122

.

7622

.

5219

.

9318

.

348

.

3522002

.

6312164301

.

2表5-17/1/2021中国人民大学六西格玛质量管理研究中心64江西(14

)94

.

9414

.

714

.

1815

.

496

.

6916692

.

2410463274

.

4山东(15

)117

.

5821

.

9320

.

8918

.

659

.

118202

.

817829331

.

1河南(16

)85

.

9817

.

317

.

1820

.

127

.

6713061

.

8911247276

.

5湖北(17

)103

.

9619

.

518

.

4818

.

779

.

1618292

.

7515745308

.

9湖南(18

)104

.

0321

.

4721

.

2820

.

638

.

7212721

.

9813161309广东(19

)136

.

4423

.

6420

.

8317

.

337

.

8529593

.

7116259334广西(20

)100

.

7222

.

0420

.

921

.

889

.

6717322

.

1312441296

.

4四川(21

)84

.

7314

.

3514

.

1716

.

937

.

9613102

.

3411703242

.

5贵州(22

)59

.

0514

.

4814

.

3524

.

538

.

0910681

.

329710206

.

7云南(23

)73

.

7221

.

9122

.

729

.

729

.

3814471

.

9412517295

.

8陕西(24

)78

.

0213

.

1312

.

5716

.

839

.

1917312

.

0811369220

.

3甘肃(25

)59

.

6214

.

0716

.

2423

.

5911

.

349261

.

1313084246

.

8青海(26

)51

.

668

.

328

.

2616

.

117

.

0510551

.

319246176

.

49宁夏(27

)52

.

958

.

258

.

8215

.

576

.

588341

.

1210406245

.

4新疆(28

)60

.

2911

.

2613

.

1418

.

688

.

3910412

.

910983266目录 上页

下页

返回

结束续表5-27/1/2021中国人民大学六西格玛质量管理研究中心65目录 上页

下页

返回

结束0

.

4235231

.

3384051

.

5902821

.

6875562

.

2396340

.

4819710

.

9547461

.

2603710

.

0488050

.

9951991

.

4096491

.

6314530

.

6672281

.

0658731

.

1887581

.

8553941

.

1338441

.

200166-

0

.

14352-

0

.

271-

0

.

10906-

0

.

29487-

0

.

00854-

0

.

57821-

0

.

45763-

0

.

152790

.

49097-

0

.

81499-

0

.

98577-

1

.

08721-

1

.

811432

.

740046-

1

.

79273-

0

.

84655-

0

.

56349-

0

.

15927-

1

.

06992-

1

.

20067-

1

.

303-

0

.

61894-

1

.

14919-

0

.

86449-

0

.

69303-

1

.

00129-

1

.

18752-

0

.

150240

.

1868270

.

5837370

.

7710330

.

694243-

0

.

3171-

0

.

11989-

2

.

27170

.

308902-

0

.

47486-

0

.

71949-

0

.

7039-

0

.

68477-

0

.

82907-

0

.

43245-

0

.

4167-

0

.

69238-

0

.

34307-

0

.

58206-

0

.

43218-

0

.

290780

.

393790

.

359408-

0

.

47334-

0

.

22224-

0

.

62003-

0

.

466192

.

0095833

.

0809562

.

9886561

.

3001862

.

0961332

.

7554331

.

6711712

.

9832842

.

1625242

.

4302940

.

9494850

.

548246-

1

.

48989-

0

.

582541

.

5557832

.

264781

.

6592991

.

9648512

.

4650251

.

5813351

.

002539-

0

.

85187-

0

.

041662

.

1944081

.

7530481

.

43671

.

5885780

.

2264810

.

1377740

.

199007-

0

.

15562-

1

.

02776-

0

.

26257-

0

.

25294-

0

.

157670

.

8186910

.

5038680

.

3503370

.

172033-

0

.

24423-

0

.

383850

.

5050410

.

156444-

0

.

227320

.

126834-

0

.

14028-

0

.

56298-

0

.

64428-

0

.

9658-

0

.

99465-

0

.

05179-

0

.

24271-

0

.

51352-

0

.

337870

.

3839290

.

2814290

.

308322-

0

.

16574-

0

.

107890

.

1065570

.

3304330

.

725830

.

645294标准化数据表7/1/2021中国人民大学六西格玛质量管理研究中心66目录 上页

下页

返回

结束-

0

.

34774-

0

.

25932-

0

.

218380

.

206435-

0

.

63406-

0

.

43245-

0

.

60092-

0

.

38161-

0

.

301460

.

068569-

0

.

00238-

0

.

03382-

0

.

13536-

0

.

085810

.

1159940

.

279260

.

375190

.

2603510

.

070190

.

2277050

.

3636890

.

335558-

0

.

24771-

0

.

4681-

0

.

50881-

0

.

059580

.

2620850

.

8206170

.

4811450

.

299804-

0

.

49995-

0

.

567831

.

3009631

.

2617850

.

4616730

.

695579-

0

.

006450

.

2942770

.

3097410

.

6520370

.

1018430

.

014276-

0

.

35529-

0

.

180720

.

043603-

0

.

37669-

0

.

60386-

0

.

6457-

0

.

60122-

0

.

52735-

0

.

42825-

0

.

14036-

0

.

30489-

0

.

89101-

0

.

97128-

0

.

58868-

0

.

620141

.

322972-

0

.

47952-

0

.

68202-

1

.

18429-

0

.

64022-

1

.

51177-

0

.

631610

.

2790930

.

5652822

.

636993-

0

.

00486-

0

.

28459-

0

.

54975-

0

.

167930

.

033199-

0

.

53205-

0

.

74635-

0

.

87284-

0

.

62654-

0

.

074770

.

013227-

0

.

40646-

0

.

36109-

1

.

27595-

0

.

95809-

0

.

63656-

0

.

351821

.

084980

.

71632-

0

.

83093-

1

.

37875-

0

.

07253-

0

.

81645-

1

.

14239-

1

.

30812-

1

.

48472-

0

.

80883-

0

.

86219-

0

.

69566-

1

.

19453-

0

.

71829-

2

.

03561-

1

.

11252-

1

.

3163-

1

.

40522-

0

.

94555-

1

.

03512-

0

.

92741-

1

.

38899-

0

.

52311-

0

.

84073-

0

.

94257-

0

.

96475-

0

.

79192-

0

.

15815-

0

.

36913-

0

.

710340

.

432779-

0

.

42603-

0

.

483537/1/206721

中国人民大学六西格玛质量管理研究中心目录 上页

下页返回结束将表数据导入spss软件,依次点选Analyze-Data

Reduction-Factor进入Factor

Analysis对话框。(在spss中,主成分分析因子分析均在Factor

Analysis模块中完成。)如图5-4所示:图5-4此时,数据集5-5.sav中的变量名均显示在对话框左边的窗口中,选择变量x1,x2,x3,x4,x5,x6,x7,x8,x9进入

variables窗口中,操作如图5-5所示:图5-57/1/202168中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束图5-5点击descriptives按钮,在弹出的对话框中,在correlationmatrix中选择coefficients。回到原对话框点击右侧的Ok,即可得到输出结果5-4和输出结果5-5。7/1/202169中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束输出结果5-47/1/202170中国人民大学六西格玛质量管理研究中心目录 上页

下页

返回

结束7/1/2021中国人民大学六西格玛质量管理研究中心71目录 上页

下页

返回

结束输出结果5-5由输出结果5-4看到,前面2个主成分 、的方差和占全部方差的比例为84.7%。我们就选取为第一主成分,为第二主成分,且这两个主成分之方差和占全部方差的84.7%,即基本上保留了原来标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。7/1/2021中国人民大学六西格玛质量管理研究中心72目录 上页

下页

返回

结束Spss软件得到主成分系数矩阵如下:(5.12)5.35.5.2由图5-4可看出,分布在第一象限的是上海、北京、天津、广西这4个省,这四个省、市、自治区的经济效益在全国来说属于比较好的,其中上海的经济效益最好。分布在第四象限的江苏、浙江、安徽、福建、山东、湖北、广东七个省、市、自治区。因为第四象限的主要特征是第一主成分,第一主成分占信息总量的比重最大,所以这七个省的经济效益也算比较好。分布在第二象限和第三象限的地区可属同一类,经济效益较差。7/1/2021中国人民大学六西格玛质量管理研究中心76目录 上页

下页

返回

结束例5.3

全国重点水泥企业经济效益综合评价例。利用主成分综合评价全国重点水泥企业的经济效益。原始数据(数据来自1984年中国统计年鉴)见表5-5。中国人民大学六西格玛质量管理研究中心77目录 上页

下页

返回

结束厂家编号及指标固定资产利税率资金利税率销售收入利税率资金利润率固定资产产值率流动资金周转天数万元产值能耗全员劳动生产率1琉璃河16

.6826

.7531

.8418

.453

.255528

.831

.752邯郸19

.727

.5632

.9419

.259

.825532

.922

.873大同15

.223

.432

.9816

.2446

.786541

.691

.534哈尔滨7

.298

.9721

.34

.7634

.396239

.281

.635华新29

.4556

.4940

.7443

.6875

.326926

.682

.146湘乡32

.9342

.7847

.9833

.8766

.465032

.872

.67柳州25

.3937

.8236

.7627

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论