山东省邹平双语校2024届中考数学模拟预测题含解析_第1页
山东省邹平双语校2024届中考数学模拟预测题含解析_第2页
山东省邹平双语校2024届中考数学模拟预测题含解析_第3页
山东省邹平双语校2024届中考数学模拟预测题含解析_第4页
山东省邹平双语校2024届中考数学模拟预测题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省邹平双语校2024届中考数学模拟预测题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()

A. B. C. D.2.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是()A. B.C. D.3.运用乘法公式计算(4+x)(4﹣x)的结果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x24.下列各式中,互为相反数的是()A.和 B.和 C.和 D.和5.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为()A. B. C. D.6.如图所示的几何体,它的左视图是()A. B. C. D.7.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm8.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是(

)A. B. C. D.9.2016的相反数是()A. B. C. D.10.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm二、填空题(本大题共6个小题,每小题3分,共18分)11.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.12.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.14.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.15.分解因式:4x2﹣36=___________.16.若代数式有意义,则实数x的取值范围是____.三、解答题(共8题,共72分)17.(8分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是()A.7 B.8 C.14 D.1618.(8分)的除以20与18的差,商是多少?19.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.20.(8分)计算:﹣22﹣+|1﹣4sin60°|21.(8分)如图,在中,,且,,为的中点,于点,连结,.(1)求证:;(2)当为何值时,的值最大?并求此时的值.22.(10分)在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为.求x和y的值.23.(12分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.(1)填空:;(2)如图1,连接,作,垂足为,求的长度;(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?24.已知关于的一元二次方程(为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.2、C【解题分析】

本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【题目详解】解:原计划用时为:,实际用时为:.所列方程为:,故选C.【题目点拨】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.3、B【解题分析】

根据平方差公式计算即可得解.【题目详解】,故选:B.【题目点拨】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.4、A【解题分析】

根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【题目详解】解:A.=9,=-9,故和互为相反数,故正确;B.=9,=9,故和不是互为相反数,故错误;C.=-8,=-8,故和不是互为相反数,故错误;D.=8,=8故和不是互为相反数,故错误.故选A.【题目点拨】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.5、A【解题分析】

先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;【题目详解】解:∵∠C=90°,AC=4,BC=3,

∴AB=5,

∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,

∴AE=AC=4,DE=BC=3,

∴BE=AB-AE=5-4=1,

在Rt△DBE中,BD=,故选A.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6、D【解题分析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、B【解题分析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【题目详解】∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣a=8cm,故选B.【题目点拨】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.8、A【解题分析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.【题目详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,故选A.【题目点拨】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.9、C【解题分析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.10、C【解题分析】

首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【题目详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故选C.【题目点拨】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、

【解题分析】试题分析:将4400000用科学记数法表示为:4.4×1.故答案为4.4×1.考点:科学记数法—表示较大的数.12、6【解题分析】

根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=CD·PD可得.【题目详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=CD·PD=6.故答案为6.【题目点拨】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一13、或﹣.【解题分析】

试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x,CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.【题目点拨】考点:动点问题.14、4.8或【解题分析】

根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【题目详解】①CP和CB是对应边时,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.【题目点拨】此题主要考查相似三角形的性质,解题的关键是分情况讨论.15、4(x+3)(x﹣3)【解题分析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解.详解:原式=.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.16、x≠﹣5.【解题分析】

根据分母不为零分式有意义,可得答案.【题目详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【题目点拨】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.三、解答题(共8题,共72分)17、C【解题分析】

根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.【题目详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.故选C.【题目点拨】本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.18、【解题分析】

根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.【题目详解】解:×÷(20﹣18)【题目点拨】考查有理数的混合运算,列出式子是解题的关键.19、见解析【解题分析】

根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.【题目详解】证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【题目点拨】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.20、-1【解题分析】

直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【题目详解】解:原式===﹣1.【题目点拨】此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.21、(1)见解析;(2)时,的值最大,【解题分析】

(1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;(2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.【题目详解】解:(1)证明:如图,延长交的延长线于点,∵为的中点,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,点是的中点,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)设,则,∵,∴,在中,,在中,,∵,∴,∴,∴当,即时,的值最大,∴.在中,【题目点拨】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.22、x=15,y=1【解题分析】

根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;

(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.【题目详解】依题意得,,化简得,,解得,.,检验当x=15,y=1时,,,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.23、(1)1;(2);(3)x时,y有最大值,最大值.【解题分析】

(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论