概率论与数理统计7.3区间估计_第1页
概率论与数理统计7.3区间估计_第2页
概率论与数理统计7.3区间估计_第3页
概率论与数理统计7.3区间估计_第4页
概率论与数理统计7.3区间估计_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三节参数的区间估计一、区间估计的基本概念二、典型例题三、小结

引言前面,我们讨论了参数点估计.它是用样本算得的一个值去估计未知参数.但是,点估计值仅仅是未知参数的一个近似值,它没有反映出这个近似值的误差范围,使用起来把握不大.区间估计正好弥补了点估计的这个缺陷.

譬如,在估计湖中鱼数的问题中,若我们根据一个实际样本,得到鱼数N的极大似然估计为1000条.若我们能给出一个区间,在此区间内我们合理地相信N的真值位于其中.这样对鱼数的估计就有把握多了.实际上,N的真值可能大于1000条,也可能小于1000条.也就是说,我们希望确定一个区间,使我们能以比较高的可靠程度相信它包含真参数值.湖中鱼数的真值[]这里所说的“可靠程度”是用概率来度量的,称为置信度或置信水平.习惯上把置信水平记作,这里是一个很小的正数.置信水平的大小是根据实际需要选定的.置信区间.称区间为

的置信水平为的例如,通常可取置信水平=0.95或0.9等.根据一个实际样本,由给定的置信水平,我小的区间,使们求出一个尽可能一、置信区间定义满足设是一个待估参数,给定X1,X2,…Xn确定的两个统计量则称区间是的置信水平(置信度)为

的置信区间.和分别称为置信下限和置信上限.

若由样本这里有两个要求:可见,对参数作区间估计,就是要设法找出两个只依赖于样本的界限(构造统计量).一旦有了样本,就把估计在区间内.可靠度与精度是一对矛盾,一般是在保证可靠度的条件下尽可能提高精度.1.要求以很大的可能被包含在区间内,就是说,概率要尽可能大.即要求估计尽量可靠.

2.估计的精度要尽可能的高.如要求区间长度尽可能短,或能体现该要求的其它准则.关于定义的说明若反复抽样多次(各次得到的样本容量相等,都是n)按伯努利大数定理,在这样多的区间中,2.

求置信区间的一般步骤(共3步)枢轴量解例1典型例题这样的置信区间常写成其置信区间的长度为由一个样本值算得样本均值的观察值则置信区间为其置信区间的长度为比较两个置信区间的长度置信区间短表示估计的精度高.说明:

对于概率密度的图形是单峰且关于纵坐标轴对称的情况,易证取a和b关于原点对称时,能使置信区间长度最小.包糖机某日开工包了12包糖,称得质量(单位:克)分别为506,500,495,488,504,486,505,513,521,520,512,485.假设重量服从正态分布

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论