2023-2024学年湖北省武汉市高二上学期10月月考数学模拟试题(含解析)_第1页
2023-2024学年湖北省武汉市高二上学期10月月考数学模拟试题(含解析)_第2页
2023-2024学年湖北省武汉市高二上学期10月月考数学模拟试题(含解析)_第3页
2023-2024学年湖北省武汉市高二上学期10月月考数学模拟试题(含解析)_第4页
2023-2024学年湖北省武汉市高二上学期10月月考数学模拟试题(含解析)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省武汉市高二上学期10月月考数学模拟试题一、单选题1.复平面内,复数的共轭复数对应的点位于(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面,其中点,法向量,则下列各点中不在平面内的是(

)A. B. C. D.3.在四棱锥中,分别为的中点,则(

)A. B.C. D.4.如图,某系统使用,,三种不同的元件连接而成,每个元件是否正常工作互不影响.当元件正常工作且,中至少有一个正常工作时系统即可正常工作.若元件,,正常工作的概率分别为0.7,0.9,0.8,则系统正常工作的概率为(

)A.0.196 B.0.504 C.0.686 D.0.9945.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点P从点A出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点P经过3次跳动后恰好沿着饕餮纹的路线到达点B的概率为(

)A. B. C. D.6.已知、是随机事件,则下列结论正确的是(

)A.若、是互斥事件,则B.若、是对立事件,则、是互斥事件C.若事件、相互独立,则D.事件、至少有一个发生的概率不小于、恰好有一个发生的概率7.已知向量,向量,则向量在向量上的投影向量为(

)A. B. C. D.8.已知正方体的棱长为1,且满足,则的最小值是(

)A. B. C. D.二、多选题9.已知空间向量,则下列选项中正确的是(

)A.当时, B.当时,C.当时, D.当时,10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马,将四个面都为直角三角形的四面体称为鳖臑.如图,在阳马中,侧棱底面,,,,则下列结论正确的有(

)A.四面体是鳖臑B.阳马的体积为C.若,则D.到平面的距离为11.抛掷一黄一白两枚质地均匀的骰子,用表示黄色骰子朝上的点数,表示白色骰子朝上的点数,用表示一次试验的结果,该试验的样本空间为,事件“关于的方程无实根”,事件“”,事件“”,事件“”则(

)A.A与互斥 B.A与对立C.与相互独立 D.与相互独立12.如图,棱长为6的正方体中,点、满足,,其中、,点是正方体表面上一动点,下列说法正确的是(

A.当时,∥平面B.当时,若∥平面,则的最大值为C.当时,若,则点的轨迹长度为D.过A、、三点作正方体的截面,截面图形可以为矩形三、填空题13.定义:设是空间向量的一个基底,若向量,则称实数组为向量在基底下的坐标.已知是空间向量的单位正交基底,是空间向量的另一个基底.若向量在基底下的坐标为,则向量在基底下的坐标为.14.如图,在二面角中,且,垂足分别为A,B,已知,,则二面角所成平面角为.

15.如图,三棱锥中,,点分别是的中点,则异面直线所成的角的余弦值是.

16.在梯形中,,,,将沿折起,连接,得到三棱锥,当三棱锥的体积取得最大值时,该三棱锥的外接球的表面积为.四、解答题17.在中,角所对的边分别为、、,满足(1)求角的大小;(2)若,且,,求的面积.18.在中,角所对边的长分别为,且(1)求的值;(2)若的面积,的外接圆的直径为,求的周长.19.为了普及垃圾分类知识,某校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p,乙同学答对每题的概率都为q(),且在考试中每人各题答题结果互不影响.已知每题甲、乙两人同时答对的概率为,恰有一人答对的概率为.(1)求p和q的值;(2)求甲、乙两人共答对3道题的概率.20.2023年9月,第19届亚洲运动会将在中国杭州市举行,某调研机构为了了解人们对“亚运会”相关知识的认知程度,针对本市不同年龄和不同职业的人举办了一次“亚运会”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有人,按年龄分成5组,其中第一组,第二组,第三组,第四组,第五组,得到如图所示的频率分布直方图,已知第一组有10人.

(1)根据频率分布直方图,估计这人的平均年龄和上四分位数;(2)现从以上各组中用分层随机抽样的方法选取20人,担任本市的“亚运会”宣传使者:(i)若有甲(年龄38),乙(年龄40)两人已确定入选,现计划从第四组和第五组被抽到的使者中,再随机抽取2名作为组长,求甲、乙两人至少有一人被选上的概率;(ii)若第四组宣传使者的年龄的平均数与方差分别为36和,第五组宣传使者的年龄的平均数与方差分别为42和1,据此估计这人中35~45岁所有人的年龄的方差.21.在四棱锥中,底面是边长为2的菱形,平面,,是的中点.(1)若为线段的中点,证明:平面;(2)线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求的长,若不存在,请说明理由.22.如图甲,在矩形中,,E为线段的中点,沿直线折起,使得,O点为AE的中点,连接DO、OC,如图乙.

(1)求证:;(2)线段上是否存在一点,使得平面与平面所成的角为?若不存在,说明理由;若存在,求出点的位置.1.C【分析】先化简复数z,即可求出共轭复数,进而可知其对应点所在的象限.【详解】复数,复数的共轭复数为,对应的点为,在第三象限.故选:C.2.B【分析】结合各个选项分别求出,计算的值是否为0,从而得出结论.【详解】对于A,,,故选项A在平面内;对于B,,,故选项B不在平面内;对于C,,,故选项C在平面内;对于D,,,故选项D在平面内.故选:B.3.A【分析】结合空间几何体以及空间向量的线性运算即可求出结果.【详解】因为分别为的中点,则,,,故选:A.4.C【分析】由题意分析,列举出系统能正常工作的基本事件,应用概率的加法公式求概率即可.【详解】由题意知:系统能正常工作的基本事件有{A、B和C正常工作,A、B正常工作而C不正常工作,A、C正常工作而B不正常工作},∴A、B和C正常工作的概率为:;A、B正常工作而C不正常工作的概率为;A、C正常工作而B不正常工作的概率为;∴系统正常工作的概率.故选:C.5.B【分析】先利用列举法得到共8种不同的跳法,再利用概率公式求解即可.【详解】点从点出发,每次向右或向下跳一个单位长度,则有(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下),共8种不同的跳法(线路),符合题意的只有(下,下,右)这1种,所以3次跳动后,恰好是沿着饕餮纹的路线到达点的概率为.故选:B.6.BD【分析】利用互斥事件的定义可得出,进而可判断A选项;利用对立事件的定义可判断B选项;利用并事件的概率公式以及独立事件的概率公式可判断C选项;列举两个事件所包含的基本情况,可判断D选项.【详解】对于A选项,若、是互斥事件,则,则,A错;对于B选项,若、是对立事件,则、是互斥事件,B对;对于C选项,若事件、相互独立,则,C错;对于D选项,事件、至少发生一个包含三种情况:、、,事件、恰好发生一个包含两种情况:、,因此,事件、至少有一个发生的概率不小于、恰好有一个发生的概率,D对.故选:BD.7.A【分析】根据投影向量的公式求解即可【详解】在上投影向量故选:A8.C【分析】由空间向量的共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.9.BCD【分析】A选项,根据垂直得到数量积为0,列出方程,求出,A错误;B选项,根据向量平行列出方程组,求出;C选项,根据向量运算法则计算出,利用模长公式列出方程,求出;D选项,先利用向量夹角余弦公式计算出两向量夹角的余弦,进而计算出正弦值.【详解】当时,,解得:,故A错误;令,则,,故B正确;,所以,解得:,故C正确;当,,因为,,故D正确.故选:BCD10.BCD【分析】由△不是直角三角形否定选项A;求得阳马的体积判断选项B;以为基底表示向量进而判断选项C;求得到平面的距离判断选项D.【详解】A错,连接AC,则△中,,则△不是直角三角形,则四面体不是鳖臑;B对,.C对,D对,设到平面的距离为d,又,由,得,则到平面的距离为故选:BCD11.BCD【分析】先用列举法写出一次试验的基本事件,再根据条件写出事件包含的基本事件即可判断出选项A和B的正误;再利用古典概率公式和事件相互独立的判断方法逐一对选项C和D分析判断即可得出结果.【详解】由题意得,,,包含36个样本点.对于选项A:由,得,所以,,,,共包含30个样本点,且,共包含6个样本点,因为,所以A与不互斥,故A错误;对于选项B:因为,,共包含18个样本点,且,共包含6个样本点,因为,所以A与对立,故B正确;对于选项C:因为,所以,故与相互独立,故C正确;对于选项D:因为,所以,故与相互独立,故正确.故选:BCD.12.ABC【分析】以点为原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,利用空间向量法可判断AC选项;分别取、中点、,连接、、、、,,找出点P的轨迹,结合图形求出的最大值,可判断B选项;作出截面,分析截面的形状,可判断D选项.【详解】以点为原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、,

对于A选项:当时,则,因为,,设平面的法向量为,则,取,则,可得,所以,则,因为平面,所以当时,∥平面,故A正确;对于B选项:当时,为中点,分别取、中点、,连接、、、、,因为、分别为、的中点,所以∥,又因为∥且,则四边形为平行四边形,可得∥,所以∥,且平面,平面,所以∥平面,同理可得,∥平面,

因为,、平面,所以平面∥平面,当点为的边上一点(异于点)时,则平面,则∥平面,故点的轨迹为的边(除去点),则,同理可得,结合图形可得,故B正确;对于选项C:当时,、分别为、的中点,如图所示:此时点、、,,

当点在平面内运动时,设点,其中,,则,因为,则,解得,设点的轨迹分别交棱、于点、,则、,当点在平面内运动时,设点,其中,,则,则,设点的轨迹交棱于点,则,设点的轨迹交棱于点,因为平面∥平面,平面平面,平面平面,所以∥,同理可得∥,所以四边形为平行四边形,且,,因此点的轨迹的长度即为平行四边形的周长,故C正确;对于D选项:设截面交棱于点,连接、,由题意可知,截面与平面重合,因为平面∥平面,平面平面,平面平面,所以∥,同理可得∥,所以四边形为平行四边形,

因为,其中,则,,且,即与不可能垂直,所以平行四边形不可能为矩形,即过A、、三点的截面不可能是矩形,故D错误.故选:ABC.13.【分析】根据基底的定义结合题意直接求解即可【详解】因为向量在基底下的坐标为,所以,所以向量在基底下的坐标为,故14.##120o【分析】在面内,作,过作交于,连接,根据二面角定义找到对应的平面角,应用余弦定理求其余弦值,进而确定大小.【详解】在面内,作,过作交于,连接,如下图示,

由,则为二面角的平面角,且,又易知为正方形,即,,面,则面,面,所以,中,故,在中,则,由图知:,可得.故15.【详解】如下图,连结,取中点,连结,,则可知即为异面直线,所成角(或其补角)易得,,,∴,即异面直线,所成角的余弦值为.

考点:异面直线的夹角.16.【分析】根据梯形的边长可求出,由几何体翻折过程中体积最大可得平面平面,由面面垂直性质可确定外接球的球心以及半径,即可求得其表面积.【详解】过点作,垂足为,如图下图所示:

因为为等腰梯形,,,所以,,可得,由余弦定理得,即,易知,所以,易知,当平面平面时,三棱锥体积最大,如图所示:

此时,平面,易知,,记为外接球球心,半径为,由于平面,,因此到平面的距离,又的外接圆半径,因此外接球半径,即可得球的表面积为.故方法点睛:在求解几何体外接球问题时,需根据几何体的特征确定球心位置,再利用半径相等构造等量关系解出半径即可.17.(1)(2)【分析】(1)根据题意由正弦定理和两角和的正弦公式可得,即可得;(2)根据向量的比例关系可得,由余弦定理可解得,由面积公式即可求出结果.【详解】(1))在中,因为,由正弦定理可得,所以,又,则,所以,因此.(2)由,且,,可得,,即;在中,由余弦定理得,即,即,解得或(舍)所以;即的面积为.18.(1)(2)【分析】(1)由条件结合正弦定理可得,通分化简可得结果;(2)由的外接圆的直径为可知,结合(1)的结果可得,再利用面积公式可得,利用余弦定理可得,进而得到的周长.【详解】解:(1),由正弦定理可得即,即;(2)外接圆直径为,,又由(1)得的面积,由余弦定理得或(舍)的周长.本题主要考查了正余弦定理,三角形面积公式的应用,考查了两角和的正弦公式的应用,熟练应用相关公式及定理是解题的关键,属于基本知识的考查.19.(1),(2)【分析】(1)利用独立、互斥事件概率公式得到方程组求解;(2)先求出甲、乙答对题目数为0、1、2的概率,再由甲乙总共答对3道题,等价于甲答对2道题乙答对1道题或甲答对1道题乙答对2道题,利用独立、互斥事件概率公式计算求得.【详解】(1)设A:甲同学答对第一题,B:乙同学答对第一题,则,.设C:甲、乙两人均答对第一题,D:甲、乙两人恰有一人答对第一题,则,.∵甲、乙两人答题互不影响,且每人各题答题结果互不影响,∴A与B相互独立,与互斥,∴,.由题意得解得或∵,∴,.(2)设:甲同学答对了i道题,:乙同学答对了i道题,.由题意得,,,.设E:甲、乙两人共答对3道题,则,∴,∴甲、乙两人共答对3道题的概率为.20.(1)31.75岁;36.25(2)(i);(ii)10【分析】(1)根据频率分布直方图,利用平均数的计算公式求解可得平均数;上四分位数即第百分位数,根据定义可构造方程求得结果;(2)(i)根据分层抽样原则可求得第四组和第五组抽取的人数,采用列举法可得样本点总数和满足题意的样本点个数,根据古典概型概率公式可求得结果;(ii)由可求得第四组和第五组所有宣传使者的年龄平均数,由可求得第四组和第五组所有宣传使者的年龄方差.【详解】(1)设这人的平均年龄为,则(岁)设上四分位数(第75百分位数)为,,,位于第四组:内;方法一:由,解得.方法二:由,解得.(2)(i)由题意得,第四组应抽取4人,记为,,,甲,第五组抽取2人,记为,乙,对应的样本空间为:,共15个样本点.设事件“甲、乙两人至少一人被选上”,则,共有9个样本点.所以,.(ii)设第四组和第五组所有宣传使者的年龄平均数为,方差为.设第四组的宣传使者的年龄分别为,平均数为,方差为,设第五组的宣传使者的年龄分别为,,平均数为,方差为,则,,,,可得,,,,设第四组和第五组所有宣传使者的年龄平均数为,方差为.则,即第四组和第五组所有宣传使者的年龄平均数为,法一:.法二:.即第四组和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论