




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公平与效率兼具—福利视角下中国省级碳排放额初分配内容摘要目前大部分学者对碳排放分配的研究都沿工业化的路径研究,以经济指标(尤其是GDP)为主要产出。这不仅违背全面建成小康社会的福利原则,更缺乏公平性。本文借鉴诺贝尔经济学奖得主诺德豪斯在DICE模型中的思想,将社会福利作为碳排放额分配的一个重要评价因子处理。本文突出的结论及创新因素有以下几点:(1)碳排放作为宏观生产过程的非期望产出变量,本文希望在拥有更高产出和福利的情况下,尽量减少碳排放量。一般认为在碳排放量一定的情况下,生产要素使用量更多的省份,一般具有更高的能源等生产要素的使用效率。结合这两部分因素,采用零和DEA效率分配模型进行规划求解,追求纳入福利指标后的整体技术效率最大化,完成我国碳排放的效率分配建模。(2)在追求公平性的原则下测算出隐藏在真实数据后的“实际”碳排放量。考虑到有的省份部分电力来源于其他省份,但是这些省份却享受了这部分能源带来的福利和对其GDP上的贡献,然而制造这部分电力的碳排放却要由那些发电省份来承担。计算出这部分电力,将其以火力发电的形式计算出相应碳排放量,然后分摊到使用这部分能源的省份,以达到公平。(3)对2016的碳排放量进行了重新分配,采用比例分配的原则,多次迭代,得到了2016年各省份处在前沿面上的分配值,并做出了成因分析。并且基于上述思想,测算出了2020年各省份在有效前沿上的碳排放值,实现了同时结合福利与经济效益下的各省份相对效率最大化的分配,直接为我国碳交易市场的省级配额提出实证结果,并且对各省如何从2016年的实际排放量向2020年的前沿面排放量提出因地制宜的解决思路。以上为我国2030年实现双重目标和构建更成熟的碳排放市场提出了一个新的思路。关键词:社会福利碳排放碳交易市场零和博弈DEA
目录一、引言 一、引言在过去二十年中,减缓气候变化已成为全球能源和环境政策课题下的主要挑战。人为排放的温室气体(GreenhouseGases)中占比最大的是二氧化碳(CO2),达年度温室气体排放总量的约65%(杨锋,杨琛琛等,2009)。随着1997年《京都协定书》的签订,二氧化碳的排放与交易逐渐成为各国环境治理关注的重点。其中,碳排放权分配和碳交易市场的构建是减少二氧化碳排放的重要一环。习近平主席在2015年巴黎气候变化大会承诺中国的碳减排目标为:2030年实现碳强度单位GDP的二氧化碳排放量2温家宝总理于2009年哥本哈根气候大会上承诺的中国目标为:到2020年中国碳强度较2005年下降40%-45%较2005年下降60%-65%,并在2030年达到中国碳排放总量峰值。虽然中国在2017年时已经超前实现了此前的碳减排承诺单位GDP的二氧化碳排放量2温家宝总理于2009年哥本哈根气候大会上承诺的中国目标为:到2020年中国碳强度较2005年下降40%-45%中国在2013年便已经开始了全国性碳交易市场的试点建设工作,到2017年,全国性碳交易市场正式启动。在目前的机制下,各省份会获得一个免费的碳排放初始额度,整个后续的碳交易市场的运作机制都将基于这个初始额度运行。因此,碳配额分配方案是否科学、合理是碳市场能否有效运行的关键与前提(王文举,陈真玲,2019)。就现在而言,中国各个省份之间的经济结构、能源使用情况差别迥异,所以本文将探索出一种对所有省份而言都尽可能公平有效的方式来测算省级碳排放额。出于数据获取上的原因,本文将把中国大陆中的30个省份作为研究对象。本文的研究将平衡发达省份与不发达省份之间的碳排放额度分配的公平性与效率性,同时兼顾经济含义与福利。在碳排放额的分配研究方法上,目前主要从责任角度和效率角度进行研究分配。由于责任角度本身存在较大的争议,即究竟是应该采用基于历史责任还是应该采用当期责任来对各主体进行分配是一个难以回答的问题(潘家华,郑艳,2009)因此本文将从效率角度入手,来对中国省级碳排放额进行合理测算。在效率角度下,大多数学者采用数据包络分析(DEA)模型来评价碳排放的效率。而数据包络分析方法(DataEnvelopmentAnalysis,简称DEA)最早出现于Farrell对生产前沿的研究,在该研究中,Farrell提出生产前沿可以通过非参数凸面来构建(Farrell,1957)。之后,著名运筹学家Charnes等(1978)提出了第一个DEA方法的CCR模型(亦被称为C2R模型),从而建立起这种效率评价方法,在1985年,Charnes等(1985)提出了第二个DEA方法的模型,称之为C2GS2模型。此后DEA方法衍生出多种模型,魏权龄等(1989)曾对Charnes和Cooper提出的一些学者在DEA方法改良上有长足的研究,Cook等(1999)对相关投入(成本)不变的DEA模型进行研究。Beasley(2003)提出一系列非线性规划方程去解决类似的投入总和为常数的分配问题,可以说是开创了零和博弈DEA思路的先河。Gomes和Lins等(2003)首先提出了ZSG-DEA模型,其原理是在总产出不变的情况下,一个决策单元的产出增加必然导致另一个决策单元的减少,这种情形与零和博弈如出一辙。该模型评价了在悉尼奥运会上获得奖牌的国家的奖牌产出效率,并证明了ZSG效率和经典DEA效率之间的线性转化公式。Lozano等提出了一个两阶段的“中心化”DEA模型来解决相似的问题,在不单独考虑每一个决策单元的投入(或产出)变量的情况下,直接寻求集合中全部单元资源消耗的最优化处理方案,并取得了相应的成果。Avellar等(2009)针对输入之和为常数的前提下的分配问题,提出了球型DEA模型(SphericalFrontierDEA,简称SFM)。除此以外,类似的还有Avellar和Milioni等提出双曲线前沿面DEA模型。GongbingBi和ChenpengFeng等(2014)提出了在不同生产技术下的ZSG-DEA模型的线性公式,并引入了参数线性规划来进行模型的求解零和DEA模型,这大大简化了零和DEA的求解问题。在DEA模型中处理非期望产出共有四种模式,第一是忽略非期望产出,Yang和Pollitt(2009)认为这些非期望产出在最后的评估过程中没有意义;第二是将非期望产出作为投入变量,Korhonen和Luptacik(2003)测量了欧洲24个发电厂的生态效率就是其中的一个例子;第三是将非期望产出纳入非线性模型中进行处理,这种处理方式由于涉及了非线性模型,处理相对复杂,Fareetal.(1989)等提出了非期望产出的弱可处置性,并在此基础上做出了相应研究;第四是对非期望产出做数值处理,例如Golany和Roll(1989)以及Lovelletal.(1995)对非期望产出做直接的倒数处理。大量学者曾经使用DEA方法对资源分配问题进行了相应的实证研究并发表了相应的科研成果文章,在此我们以使用DEA方法在碳排放额分配问题上大放异彩的学者为例。Gomes等(2007)首先利用零和DEA模型,将二氧化碳排放作为唯一投入变量,人口、GDP和能源消耗作为产出变量对欧盟各国的碳排放量进行了重新分配,并提出了经典DEA和零和DEA模型的技术效率转换公式并提供了相关证明过程,为后续的零和DEA模型的求解提供了简化。苗壮等(2012)曾基于2006-2010年的历史数据和2015年的预测数据,通过应用基于环境生产技术的ZSG-DEA模型,对中国各省区“十一五”时期的能源强度的下降幅度进行评价,完成了2006-2010年中国各个省区的理论节能目标的计算并与实际节能情况进行了比较,为各个省区的节能达标提供理论借鉴与路径参考,详细阐述了此模型在碳排放相关分配领域的应用机理。钱明霞等(2015)依借鉴了Lins的研究思路基于ZSG-DEA模型对我国的几个产业部门间的碳排放分摊进行了分析。除此以外,郑立群(2012)借鉴了林坦等和Lins等人的思路对国内碳排放进行了重新分配,并做出了浅层次的分析。综合我国已有研究来看,目前对于碳排放分配的研究多数都基于工业化路径,并采用以经济效益为核心指标的研究方式,忽视福利原则,也由此导致碳排放的分配可能会影响区域居民的总福利。众多学者并没有考虑到除了GDP、人口以外的其他评估指标,并没有真正考虑到碳排放对社会福利的影响,本文整合社会福利以及其他生产中的经典投入指标,对此问题进行了重新分析,相对国内已有研究有较大的进步性。二氧化碳减排情景的复杂性归因于经济发展,能源消耗和二氧化碳排放之间的强烈相互关系(Fernández-Amadoretal,2017;Zaman&Moemen,2017)。虽然能源对于推动经济增长至关重要,但更高的能源消耗水平会导致二氧化碳排放量显着增加。因此,二氧化碳排放量与经济有着极其复杂的相互关系,单纯从经济层面来对二氧化碳额度进行分配,有极强的局限性。如林坦等(2011)创新性地使用了将二氧化碳排放量作为投入,其他评价指标作为产出的ZSG-DEA模型来对欧盟各国的碳排放额度进行效率分配,该模型运用了在DEA模型中,当产出为非期望产出时用来规避效率损失的较为有效的方法—非期望产出作为投入法(刘勇,2010)。但是,无论是运用投入导向型DEA模型的学者亦或是运用产出导向型DEA模型的学者,都仅仅把人口、GDP、能源消耗量等指标用来评价碳排放效率,他们认为同样的碳排放水平下,更高的效率意味着会有更多的经济产出(Cucchiellaetal.,2018),而建立碳交易市场的初衷,其目的本身不在于追求更高的经济产出就是为了缓解全球性的气候问题,缓解温室效应,从而提升全人类的福利水平。Sugiawan等(2019)认为,对可持续性问题的评估不能使用传统的GDP,需要依靠更具包容性的福利指标。因此,本文采取了在ZSG-DEA模型中,增加一些维度来涵盖一些福利性质的指标的方式,来解决这个问题。福利指标本身难以量化,但福利经济学认为,除了收入与公平以外、影响社会福利水平的因素还包括人文、生态、社会和健康等多个方面(丁凡琳等,2019),因此,福利指标的选取将涵盖上述几个范畴。在福利指标的选取中,我们选取了消费与资本存量,这两个指标被认可为能够用来衡量一个地区的福利与可持续发展水平(Nordhausetal.,2013)。在纳入福利指标后,更高的碳效率不仅意味着更多的经济产出,也意味着更高的福利水平,从而真正体现了众多学者探究碳排放分配额度的内在意义。再者,建立碳交易市场的目的,同样也是为了可持续发展,因此,选取一些与可持续发展紧密相关的指标,也能起到进一步约束效率的作用。本文借鉴了用福利指标来评价经济问题的基本思想(Nordhausetal.,2013),将社会福利作为碳排放额分配的一个重要评价因子,测算出未来各省份处于前沿面上的修正碳排放额,使结果兼顾福利、公平和经济效益。此外,电力的摊派问题也是一个传统的问题。由于部分省份使用的电力来源于其他省份,而生产这部分电力所排放的二氧化碳却被计算在了生产地之上。这些使用转移电力的城市既享受了电力所带来的福利,又不用承担这部分二氧化碳,这种现象对于省级碳排放额度的分配是极为不公平的。因此本文也寻找了一种合适的方式,来对电力的摊派进行还原。本文采用了较为精准的一种还原方式,先找到转移电量,然后还原出生产这部分电力所需要消耗的标准煤,接着还原出二氧化碳排放量。本文的创新性主要有以下三点:(1)解决了此前模型中的不足,代入福利指标,扩张传统模型维度,从而能够更好地分析碳效率的意义所在在传统的DEA模型中(以投入导向模型为例),众多学者一般选择将人口、GDP、能源消耗量等与经济效益密切相关的指标作为产出。此举的不足在于,创建碳交易市场、进行初始碳排放额分配的核心目的是为了缓解气候问题、追求可持续发展、提升人类福利水平,而非一味为了追求经济效益,因此,在传统模型下,碳效率很难做出合理的经济学意涵分析。而本文拓宽了模型的维度,纳入了福利指标与可持续发展指标作为新的产出,符合碳配额的初衷,也将更为有效地对DEA分配进行约束,使得分配结果更为公平、有效且同时兼顾经济效率和福利。(2)计算出更为合理的碳交易市场省级配额分省碳配额的确定是碳交易市场的基础和前提,也是影响碳交易市场运行效率的关键性因素。因此本文建立了一个加入福利指标后的碳配额计算模型,从而得出更适合中国当下发展阶段的省级碳配额分配总量,并为中国的碳交易机制体系打下坚实的基础,从而助力中国碳交易市场的科学发展。(3)还原电力,使配额与碳排放更为公平省份之间的电力调度,会影响电力背后的“真实”福利与“真实”能源消耗量。本文统计整理了各省份电力调度数据,把电力转化为相对应的碳排放量。对现实碳排放量的还原,使碳排放量更为科学与公平,一个更为科学与公平的省级碳排放额度对于整个碳交易市场的机制建立、节能减排目标的实现有着决定性作用。二、模型建立(一)零和DEA模型基础标准DEA模型(BCC)常见以产出导向为基础,一般假设存在n个决策单元(以下称为DMU),每个决策单元有p个投入变量,q个产出变量,第k个决策单元的相对效率即为,列向量和为变量,为所有DMU的第j种投入变量组成的列向量,为第k个DMU的第j种投入变量的大小,为所有DMU的第j种产出变量组成的列向量,为第k个DMU的第j种产出变量的大小。如下所示,为标准的DEA模型(BCC),如果将凸性约束去掉便为CCR模型。具体模型如下:(1)在公式(1)的基础上,考虑到有一些产出变量或者投入变量在不同DMU之间有竞争关系,这种竞争关系类似于经济学里的零和博弈,Lins等(2003)提出了零和DEA(Zero-sumGainsDEA,ZSG-DEA)模型。在他们提出的零和DEA模型有两种再分配方式,等比减少和等量减少策略比例减少策略,由于第二种策略更符合显示适用条件更广,本文采用第二种策略,分析思路是:假设存在n个决策单元(DMU),每个决策单元有p个投入变量,q个产出变量,第k个决策单元的相对效率即为,列向量和为变量,为所有DMU的第j种投入变量组成的列向量,为第k个DMU的第j种投入变量的大小,为所有DMU的第j种产出变量组成的列向量,为第k个DMU的第j种产出变量的大小。对第k个决策单元的投入变量进行评价。具体模型如下公式(2)所示:(2)可以看到经典DEA前沿面和ZSG前沿面的示意图如下:0经典DEA前沿面零和DEA前沿面A0经典DEA前沿面零和DEA前沿面AB投入产出Gomes(2003)等证明了单产出变量的零和DEA模型中的可以直接通过经典DEA中的直接计算而来,具体公式如下:(3)但是这个公式仅仅适用于单产出变量的情况,考虑到多产出的复杂性,解非线性规划问题是不可避免的,为了保证求出,证明了上述规划问题为凸优化,即保证了最优解的存在性。(二)单投入多产出模型在我国的三十个省区中,将人口数量、资本存量、能源消耗量、福利、GDP作为产出变量(分别用L、K、E、W、G表示),仅将二氧化碳作为唯一投入变量处理(用C表示),以此为基础对数据可得的我国三十个省区进行评估。二氧化碳在过去的研究中有两种处理方式,一种是通过倒数变换或一系列数据处理作为产出处理,另外一种方式是将二氧化碳直接作为投入处理,在这里采用第二种方式,将二氧化碳这种生产中的非期望产出在模型中当成投入处理。这符合投入变量越小越好(thesmallerthebetter)的性质,同时模型中的产出变量满足在固定碳排放时越大越好(thelargerthebetter)的性质,因此才会这样处理。这意味着,在碳排放量相同的情况下,拥有更多人口、福利、GDP、能源消耗量以及资本存量的省份拥有更高的效率。由于仅仅将碳排放量作为单一投入变量,可以使用单一投入变量转化公式,避免求解非线性规划问题,简化求解过程。根据以上说明,本文构建以下模型:(4)其中,、、和为第p个省区的能源消耗,资本存量、二氧化碳排放和人口数量,和为第p个省区的福利指标和GDP数值。各省福利的计算采用标准经济增长模型的叙述,具体如下式所示,其中α表示消费边际效用弹性。(5)对公式(4)进行DEA规划求解。在式中,和,(i=1,2,…,N)都是规划变量。在上式当中,为我国当年碳排放总量,满足零和DEA方法的约束条件。按照比例分配原则,第k个省区减少份额的投入,那么就要求其他(N-1)个省区按照各自所占的全国碳排放量的份额等比例减少,其他决策单元在全国碳排放量中的所占份额越多,所减少的额度也越多,则意味着其他每个省区的碳排放的增加量为。Gomes等已经证明出单一投入或产出ZSG前提下经典DEA效率与存在线性转化公式关系。根据本模型,有下式:(6)其中通过求解经典DEA模型得出(如下式所示),M为DEA效率未达到1的点构成的集合如下:。(7)另外本文采用多次迭代的方式,不断重新分配需要减排省份的二氧化碳额度,从而不断更迭前沿面,直到全部省份更新到达最新的前沿面,最后得到各个省份的碳排放量效率分配方案。(三)电力数据更正 下面将介绍对第k个省份的实际碳排放量进行一系列变换,得到公平碳排放的过程:从《中国能源统计年鉴》中得到该省份电力的外省调入量以及该省份电力的本省调出量,以及本省火力发电量和水力发电量,那么将该省的输出中火力发电占比为:将这一部分当成火力发电输出,另外计算出全国火力发电占比:将此作为电力输入中火力发电所占的比重。那么通过这样估计可以得出该省火力发电输出量(数值为负意味着输入)为:那么更正得到:其中为单位火力发电到二氧化碳转化系数。以上思路仅仅是对数据进行了粗略估计,由于缺乏更详细的电力调动数据,很难完成更精确的分析和处理。三、实证分析(一)模型数据来源本文计算了各省火力发电的产量,并考虑了电力消费中的转移问题,这也是本研究的创新点。例如山西、内蒙古等火电大省的产能明显是超出本省使用量的,这中间有比较明显的消费转移,但在考虑福利指标的情形下,这一部分对于本研究来说尤其重要,要避免使有的省份承担了能源消耗,但是却没有享受这部分能源所带来的全部福利。文中各种能源的消耗量转化为标准煤之后采纳IPCC标准计算得到CO2排放量,单位为万吨,数据源为2016年。资本存量参考单豪杰(2008)的做法,将2000年确定为基期计算得到2016年相关数据。2020年能源、人口、GDP、人均消费和资本存量均为回归预测数据,CO2总排放量采用单位GDP碳排放量比2005年减少45%的条件进行计算。福利采用标准经济增长模型中的福利函数进行计算,公式4中α表示消费边际效用弹性,不同地区可能会有所不同,但短期内一般可以假定为相同。其他2016年数据(能源消耗量,人口,GDP,人均消费水平,各类能源消耗量等)均来自国家统计年鉴和中国能源统计年鉴。(二)我国2016年碳分配结果分析由于表中数据数量较多,从中提取2016年迭代结果如下:表1.2016年我国省级碳排放额分配结果1.2016年数据分析从迭代过程中可以看出,ZSG效率小于1的省份需要降低碳排放量额度,将碳排放额度分配各其他在前沿面上的省份,这些省份在增加相应碳排放量后,其绝对效率会降低,但是相对效率会发生两种情形的变化——保持为1不变,或减小到小于1,离开了前沿面,但是可以看到,经过几次迭代之后,各个省份均达能够到达前沿面,这也是选择多次迭代方法的原因之一。虽然不同省份理论上的排放额度的增减量不同,但2016年全国碳排放总额却是固定不变的。多次迭代分配后的各个决策单元都处于前沿面上,实现了福利、资本、人口、GDP、能源、碳排放量的帕累托最优。图2.我国各省区碳排放额分配前后对比图图中黑白两色的差值,便是实现帕累托最优时的碳排放额度与2016年时的该省份修正碳排放的差额,体现了该省份为了实现最优所需要增加或减少的碳排放额度。(1)各省2016年效率排放与2016年修正排放的降幅分析。表2.2016年分配效率增降幅度表在得出了2016年末各省ZSG碳排放量的基础上,将其与2016年的碳排放量数据相比,得出各省区ZSG碳排放量的增减幅度。并以上升、下降的平均水平将省区分为了A(上升)、B(下降)两类。A类地区,例如北京、天津,其较低的碳排放量与该地区的高能源使用效率、相对较低的化石能源、消费结构以及产业结构有着直接关系,上述地区可占有更多的合理碳排放额度,因此可适当对产业规模进行扩大,进一步充分发展优势产业。而在A类地区中,还有来自较为落后的西部地区,例如云南、四川等地,这是因为这些地区的单位能源所产生的碳排放量很低,使用的能源大部分产碳较少,从而会有比较高的评估结果。而B类地区,例如河北、辽宁、新疆、山西等地区,其单位CO2所对应的人均GDP和福利产出水平并不高,与A类地区相比,其能源利用效率也很低。以河北省为例,由于自然条件和历史因素,其形成了以钢、煤、化工等资源消耗型重污染产业为主的多元支柱结构,再加之特定冬季供暖以及城镇化不断推进过程中所带来的建筑业施工污染排放,也在一定程度上加剧了二氧化碳的排放。而山西作为传统能源输出大省,由于其产业结构单一、长期以来过度依赖自身丰富的能源优势,发展煤炭型产业,走“高碳”型路线,使得目前碳排放量远高于有效前沿面水平。因而,上述地区在未来发展过程中,应不断提升技术水平、优化产业结构,控制总体碳排放量以及能源利用效率。(三)我国2020年碳分配结果分析本文采用Matlab软件进行规划求解,对式(4)对应的各省区能源消耗量的零和DEA技术效率进行多次迭代测算,每次迭代根据各省效率按照比率分配法重新分配,选择DEA方法中的规模收益可变的方式进行。这里以2016年为例,得到效率分配结果如下表所示。表3.2020年中国碳排放省级分配额度1.2020年末数据分析对于计算结果,零和DEA效率小于1的省份,则该省份需要降低碳排放量额度,将碳排放额度分配各其他在前沿面上的省份,这些省份在增加相应碳排放量后,其绝对效率会降低,但相对效率会发生两种情形的变化—保持1不变,或减小,离开了前沿面,但是可以看到,经过几次迭代之后,各个省份均达到了前沿面,即达到了相对效率最优的情形。不同省份理论上的排放额度增减不同,但2020年全国碳排放总额却是固定不变的。多次迭代分配后的全部投入和产出都处于前沿面上,实现了福利、资本、人口、GDP、能源、碳排放量的帕累托最优。表中第三列和第二列的差值,便是实现帕累托最优时的碳排放额度与2020年时的该省份碳排放量预测值的差额,体现了该省份为了实现最优所需要增加或减少的碳排放额度。以山东省为例,山东省在2020年需要增加碳排放量33769.05万吨,才能够达到帕累托最优状态。2.各省2020年期末与2016年期末碳排放额度降幅分析在得出了2020年末各省ZSG碳排放量的基础上,将其与2016年的真实数据相比,得出各省区ZSG碳排放量的增减幅度。并以上升、下降的平均水平将省区分为了A(上升幅度高于平均水平)、B(上升幅度低于平均水平)、C(下降幅度低于平均水平)、D(下降幅度高于平均水平)四类。表4.2020年中国省级碳排放额增减幅度分析降幅在20.66%以下的C类地区,如河北、辽宁、贵州、新疆等地区,其节能减排压力相对较小,但仍然需要从根本上解决CO2排放问题。例如河北、辽宁等省通过“关、停”高能耗、重污染的钢铁、水泥和火电企业,充分挖掘了本地区的减排潜力,但产业结构调整、新能源技术的开发和运用才是解决此类问题的根本。降幅在20.66%以上的D类地区,承担着较大的减排义务。如宁夏、黑龙江、山西、内蒙古、陕西。以山西为例,其作为传统的能源输出大省、GDP大省,虽然在弥补了真实福利之后,减排指标有所下降,但仍然需要从根本上进行节能减排。应不断调整省内工业中高能耗的煤、钢、重型化工行业比重,革新能源技术,推广清洁能源并加大对其的扶持作用,同时淘汰落后产能,改善能源效率。山西地区由于其要素禀赋特质,其节能减排并非一蹴而就,因此要形成循序渐进的减排模式,即先向C类地区靠近后,再逐步向B类地区、A类地区努力。而碳排放量小于前沿水平的A、B类地区,应当拥有更多的合理碳排放额度,同时仍然可以发展生产型服务业和新型服务业为主,提高城镇居民的能源使用效率来进一步提升能源强度。而A类地区中某些地区,例如天津,须利用自身港口物流业优势,加快产业结构改善,大力扶持第三产业,增加GDP中的高科技比重;而像上海、北京这一类的A类地区,可以适当选择在远郊建设部分煤电企业,承担部分地区的电力输送工作;B类地区中的吉林、江西都为中部的农业大省,工业比重较小,对于此类地区应该改善产业结构或发展以旅游业为主的服务业,严格控制高能耗重型化工行业内迁进程。四、结论和展望(一)主要结论和创新点(1)纳入福利指标。考虑福利指标作为约束条件之一,不仅仅局限于常规指标,同时又保留了能源、人口等常规指标,很好的符合了中国梦国家富强、民族振兴、人民幸福的本质。同时兼顾公平和效率,得到相应的2020年各省二氧化碳排放量上限分配量。(2)考虑二氧化碳排放量原始数据的公平计算问题,在追求公平性的原则下测算出隐藏在真实数据后的“实际”碳排放量。重新计算了每个省份实际投入生产所产生的碳排放量,从而避免了某些省份承担了碳排放却没有享受的相应福利的状况。(3)我国碳排放额度效率分配研究。依托于环境生产技术和纳入社会福利研究思路的前提下,结合零和DEA方法。在总排放额度不变的情况下,得到保证总体相对效率最优化的碳排放量,为我国未来的碳交易市场配额问题提出了切实可行的解决方案。(4)提出一种新的可行的逐年的碳排放分配方式,为我国未来碳交易市场配额问题提出了新的方向。每年可以通过本年统计数据进行测算,得到次年的分配量,并采用逐步逼近的方式,逐年向有效前沿靠拢,达到相对效率最大化。(二)研究展望(1)基于以上分析,本文认为各省碳排放配额走向相对有效需要层层渐进,同时也要因地制宜。东部地区经济实力雄厚,应当实施严格的碳排放管理制度。中西部地区应当重视科技发展,积极引进先进技术。同时,国家应在人才和资金投入的项目上给予政策和财政上的支持。(2)本研究在撰写过程中,仅仅能够获取到《中国能源统计年鉴2017》,而《中国能源统计年鉴2018》尚未出版,如果研究能够补充2017年的数据会使研究更具有时效性并使相关预测更加准确。(3)对于本文中的碳排放量的计算,所采用的方式是以各类能源消耗量结合IPCC标准进行折算,而这仅仅是一种近似的测算,对于其他生产过程中的碳排放并没有进行测算,希望能够未来的研究中,更全面考虑碳排放的来源。(4)本文对于碳排放的公平测算,由于缺少各省电力资源的实际去向,无法区别使用水力发电等不产生二氧化碳的电力的省份,也难以准确地测度出某些水力发电大省的碳排放,只能够给出一个近似的测度值,希望能够在未来得到更多准确数据,完善文中的这部分内容。参考文献杨锋,杨琛琛,梁樑等.各国奥运会参赛效率评价与排序研究[J].中国软科学,2009,(3):166-173.苗壮,周鹏,李向民.2012.我国“十二·五”时期省级碳强度约束指标效率分配研究:基于ZSG环境生产技术[J].经济管理(9):25-36.林坦,宁俊飞.基于零和DEA模型的欧盟国家碳排放权分配效率研究[J].数量经济技术经济研究,2011,28(3):36-50.郑立群.中国各省区碳减排责任分摊:基于零和收益DEA模型的研究[J].资源科学(11):2087-2096.FarrellMJ.Themeasurementofproductiveefficiency[J].JournalofRoyalStatisticalSocietySeries,1957,120(3):253-290.CharnesA,CooperWW,RhodesE.Measuringtheefficiencyofdecision-makingunits[J].EuropeanJournalofOperationalResearch,1978,6(2):429-444.魏权龄,卢刚.DEA方法与模型的应用——数据包络分析(三)[J].系统工程理论与实践,1989,(5):67-75.CookWD,KressM.Characterizinganequitableallocationofsharedcosts:ADEAapproach[J].EuropeanJournalofOperationalResearch,1999,119:652-661.BeasleyJE.Allocatingfixedcostsandresourcesviadataenvelopmentanalysis[J].EuropeanJournalofOperationalResearch,2003,147:198-216.LinsMPE,GomesEG,SoaresDM,etal.OlympicrankingbasedonazerosumgainsDEAmodel[J].EuropeanJournalofOperationalResearch,2003,148:312-322.LozanoSA,VillaG.Centralizedresourceallocationusingdataenvelopmentanalysis[J].JournalofProductivityAnalysis,2004,22:143-161.AvellarJVG,MilioniAZ,RabelloTN.SphericalfrontierDEAmodelbasedonaconstantsumofinputs[J].JournaloftheOperationalResearchSociety,2009,58:1246-1251.BiG,FengC,DingJ,LiangL,ChuF.ThelinearformulationoftheZSG-DEAmodelswithdifferentproductiontechnologies[J].JournaloftheOperationalResearchSociety,2014,65:8.GomesEG.Modellingundesirableoutputswithzerosumgainsdataenvelopmentanalysismodels[J].JournaloftheOperationalResearchSociety,2007,59(5):616-623.王群伟等.我国全要素能源效率的测度与分析[J].管理评论,2010,(3):37-43.FareR.Environmentalproductionfunctionsandenvironmentaldirectionaldistancefunctions[J].Energy,2007,32(7):1055-066.国家统计局.中国统计年鉴——2017[M].北京:中国统计出版社,2014CarbonEmissionAllowancesofEfficiencyAnalysis:ApplicationofSuperSBMZSG-DEAModel[J].Pol.J.Environ.Stud.Vol.22,No.3(2013),653-666钱明霞,路正南,王健.基于ZSG-DEA模型的产业部门碳排放分摊分析[J].工业技术经济,2015,(11),97-104郭文,秦建友,曹建海.中国资本存量测算问题分析[J].上海经济研究,2018(12),89-102王伟中,陈滨,鲁传一等.《
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 饭店小额入股协议书
- 饭店招聘厨师协议书
- 酒吧卡座外包协议书
- 2025年员工培训计划全攻略
- 农家乐入股合同协议书
- 项目文明施工协议书
- 养老院老人退养协议书
- 判决书双方协商协议书
- 酒店转让居间协议书
- 设备临时使用协议书
- 2025年商法知识竞赛考试试卷及答案
- 2025年山东省临沂市平邑县中考一模语文试题(含答案)
- 2025年电子信息工程专业考试试题及答案
- 【威海】2025年山东省威海技师学院公开招聘工作人员29人笔试历年典型考题及考点剖析附带答案详解
- 2025年第六届全国国家版图知识竞赛题库及答案
- 机械租赁投标服务方案
- 2025年北京市朝阳区九年级初三一模英语试卷(含答案)
- Unit1-Unit2重点短语(背诵版+默写版)外研版英语新七年级下册
- 《抗休克药物治疗》课件
- 《2024 3572-T-424 重大活动食品安全保障规范 第 3 部分:供餐》知识培训
- 2025年中考语文总复习:八年级下册教材字词打卡练
评论
0/150
提交评论