高中数学 高考数学模拟试题(九套)_第1页
高中数学 高考数学模拟试题(九套)_第2页
高中数学 高考数学模拟试题(九套)_第3页
高中数学 高考数学模拟试题(九套)_第4页
高中数学 高考数学模拟试题(九套)_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学模拟试题(九套)2020新课标高考数学(理科)必刷卷(一)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,若复数,则()A. B. C. D.或2.若集合,,则()A. B. C. D.3.若椭圆的一个焦点的坐标是,则其离心率等于()A.2 B.. C.. D.4.2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为()A. B. C. D.5.正方体ABCD-A1B1C1D1中,E是棱AB上的动点,则直线A1D与直线C1E所成的角等于()A.60° B.90° C.30° D.随点E的位置而变化6.已知tanα=–2,则的值为()A. B.C. D.8.三世纪中期,魏晋时期的数学家刘徽利用不断倍增圆内接正多边形边数的方法求出圆周率的近似值,首创“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的程序框图,则输出的值为()(参考数据:)A.6 B.12 C.24 D.489.已知函数,若将曲线向左平移个单位长度后,得到曲线,则不等式的解集是()A. B.C. D.10.现有三条曲线:①曲线;②曲线;③曲线.直线与其相切的共有()A.0条 B.1条 C.2条 D.3条11.设双曲线:的左、右焦点分别为,,直线:与双曲线在第一、三象限的渐近线的交点为,若,则双曲线的离心率为()A. B.2 C. D.12.已知函数为偶函数,当时,,则()A. B.C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.14.已知,,现有下列四个结论:①;②;③;④.其中所有正确结论的编号是______.15.设,,分别为内角,,的对边.已知,则______,的取值范围为______.16.设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,则当三棱锥的体积最大时,球的表面积为______.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.在数列中,,,.(1)求数列的通项公式;(2)求数列的前项和.18.如图,在直三棱柱中,,,,,分别是,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.19.已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).(1)求的方程.(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.20.某城市有东、西、南、北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵,交警部门记录了11月份30天内的拥堵情况(如下表所示,其中●表示拥堵,○表示通畅).假设每个人口是否发生拥堵相互独立,将各入口在这30天内拥堵的频率代替各入口每天拥堵的概率.11.111.211.311.411.511.611.711.811.911.1011.1111.1211.1311.1411.15东入口●○○○○●○●●○●●●○●西入口○○●●○●○●○●○●●○○南入口○●○○○●○○○○○○○○●北入口●○○○●○○●○○○○○●○11.1611.1711.1811.1911.2011.2111.2211.2311.2411.2511.2611.2711.2811.2911.30东入口●○○●○○○●●○●○●○●西入口●○●●○●○●○●○●○●○南入口○○○●○○○○●○○○○○●北入口○○●○○○○○○○○○○●○(1)分别求该城市一天中早高峰时间段这四个主干道的入口发生拥堵的概率.(2)各人口一旦出现拥堵就需要交通协管员来疏通,聘请交通协管员有以下两种方案可供选择.方案一:四个主干道入口在早高峰时间段每天各聘请一位交通协管员,聘请每位交通协管员的日费用为(,且)元.方案二:在早高峰时间段若某主干道入口发生拥堵,交警部门则需临时调派两位交通协管员协助疏通交通,调派后当日需给每位交通协管员的费用为200元.以四个主干道入口聘请交通协管员的日总费用的数学期望为依据,你认为在这两个方案中应该如何选择?请说明理由.21.设函数.(1)当时,求的极值;(2)如果≥在上恒成立,求实数的取值范围.2020新课标高考数学(理科)必刷卷(二)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i是虚数单位,如果复数的实部与虚部互为相反数,那么实数a的值为()A.B.-C.3D.-36.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则7.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把120个面包分给5个人,使每人所得成等差数列,且使较多的三份之和的是较少的两份之和,则最少的一份面包个数为()A.46 B.12 C.11 D.28.已知函数的最小正周期为,且,则的一个对称中心坐标是A. B.C. D.9.在中,D为BC中点,O为AD中点,过O作一直线分别交AB、AC于M、N两点,若(),则()A.3 B.2 C.4 D.10.的三个内角A,B,C的对边分别为a,b,c,若的面积为S,且,,则等于A. B. C. D.11.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P﹣ABCD为阳马,侧棱PA⊥底面ABCD,PA=AB=AD,E为棱PA的中点,则异面直线AB与CE所成角的正弦值为()A. B. C. D.12.设奇函数的定义域为,且的图像是连续不间断,,有,若,则的取值范围是()A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.两个非零向量满足,则向量与的夹角为____.14.如图所示,程序框图(算法流程图)的输出结果为_________.15.如图,已知抛物线与双曲线(a>0,b>0)有相同的焦点F,双曲线的焦距为2c,点A是两曲线的一个交点,若直线AF的斜率为,则双曲线的离心率为_______.【答案】.16.已知对于区间内的任意两个相异实数,恒有成立,则实数的取值的集合是__________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.已知数列的前项和为,,且满足.(1)求数列的通项;(2)求数列的前项和为.18.如图,四边形是矩形,平面.(1)证明:平面平面;(2)求二面角的余弦值.19.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1(1)求曲线C的方程.(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.20.已知函数.(1)求曲线在点处的切线方程;(2)若关于的不等式恒成立,求整数的最小值.21.世界军人运动会,简称“军运会”,是国际军事体育理事会主办的全球军人最高规格的大型综合性运动会,每四年举办一届,会期7至10天,比赛设27个大项,参赛规模约100多个国家8000余人,规模仅次于奥运会,是和平时期各国军队展示实力形象、增进友好交流、扩大国际影响的重要平台,被誉为“军人奥运会”.根据各方达成的共识,军运会于2019年10月18日至27日在武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项、329个小项.其中,空军五项、军事五项、海军五项、定向越野和跳伞5个项目为军事特色项目,其他项目为奥运项目.现对某国在射击比赛预赛中的得分数据进行分析,得到如下的频率分布直方图:(1)估计某国射击比赛预赛成绩得分的平均值(同一组中的数据用该组区间的中点值代表);(2)根据大量的射击成绩测试数据,可以认为射击成绩近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50,用样本平均数作为的近似值,用样本标准差作为的估计值,求射击成绩得分恰在350到400的概率;[参考数据:若随机变量服从正态分布,则:,,;(3)某汽车销售公司在军运会期间推广一款新能源汽车,现面向意向客户推出“玩游戏,送大奖”,活动,客户可根据抛掷骰子的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知骰子出现任意点数的概率都是,方格图上标有第0格,第1格,第2格,……第50格.遥控车开始在第0格,客户每抛掷一次骰子,遥控车向前移动一次,若抛掷出正面向上的点数是1,2,3,4,5点,遥控车向前移动一格(从到),若抛掷出正面向上的点数是6点,遥控车向前移动两格(从到),直到遥控车移动到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移动到第格的概率为,试证明是等比数列,并求,以及根据的值解释这种游戏方案对意向客户是否具有吸引力.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程已知直线的参数方程为(为参数)在以坐标原点为极点,轴非负半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求直线普通方程和曲线的直角坐标方程;(2)设直线与曲线交于两点,求.2020新课标高考数学(理科)必刷卷(三)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,,,则集合等于A. B. C. D.2.若复数,,则下列结论错误的是()A.是实数 B.是纯虚数 C. D.3.已知,则下列结论中不正确的是()A.m>n>1 B.n>1>m>0 C.1>n>m>0 D.1>m>n>04.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A. B. C. D.5.已知fx是定义在R上的奇函数,满足f(1+x)=f(1-x)A.1 B.0 C.1 D.20196.若实数x,y满足2x+2y=1A.-4 B.-2 C.2 D.4【答案】B【解析】7.等差数列中,则()A.8 B.6 C.4 D.38.已知函数的部分图象如图所示,则下列判断正确的是()A.函数的图象关于点对称B.函数的图象关于直线对称C.函数的最小正周期为D.当时,函数的图象与直线围成的封闭图形面积为9.中,角所对应的边分别为,表示三角形的面积,且满足,则()A. B. C.或 D.10.如图中共顶点的椭圆①②与双曲线③④的离心率分别为e1,e2,e3,e4,其大小关系为()A.e1<e2<e3<e4B.e2<e1<e3<e4C.e1<e2<e4<e3D.e2<e1<e4<e311.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑中,平面,,,鳌臑的四个顶点都在同一个球上,则该球的表面积是()A. B.C. D.12.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是()A. B.C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.已知向量满足,,的夹角为,则__________.14.已知程序框图如图所示,其功能是求一个数列的前10项和,则数列的一个通项公式16.已知是椭圆()和双曲线()的一个交点,是椭圆和双曲线的公共焦点,分别为椭圆和双曲线的离心率,若,则的最小值为________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.记为数列的前项和,且满足.(1)求数列的通项公式;(2)记,求满足等式的正整数的值.18.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.19.从某市的高一学生中随机抽取400名同学的体重进行统计,得到如图所示的频率分布直方图.(1)估计从该市高一学生中随机抽取一人,体重超过60kg的概率;(2)假设该市高一学生的体重X服从正态分布N(57,σ2).①利用(1)的结论估计该高一某个学生体重介于54~57kg之间的概率;②从该市高一学生中随机抽取3人,记体重介于54~57kg之间的人数为Y,利用(1)的结论,求Y的分布列.20.已知动圆过点且和直线:相切.(1)求动点的轨迹的方程;(2)已知点,若过点的直线与轨迹交于,两点,求证:直线,的斜率之和为定值.21.已知函数f(x)=x2+(x2-3x)lnx(1)求函数f(x)在x=e处的切线方程(2)对任意的x)都存在正实数a,使得方程f(x)=a至少有2个实根,求a的最小值(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的参数方程为(t为参数).(1)若曲线C在点(1,1)处的切线为l,求l的极坐标方程;(2)若点A的极坐标为,且当参数t∈[0,π]时,过点A的直线m与曲线C有两个不同的交点,试求直线m的斜率的取值范围.2020新课标高考数学(理科)必刷卷(四)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则=()A. B. C. D.2.已知复数(i为虚数单位),则的虚部为()A.1 B.-1 C. D.3.已知,,,则,,的大小关系是()A. B. C. D.4.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附表:参照附表,下列结论正确的是().A.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”B.在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”C.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”D.有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”5.已知函数的图象关于原点对称,且满足,且当时,,若,则()6.已知空间中三条不同的直线、、和平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.已知公差不为0的等差数列,前项和为,满足,且成等比数列,则()A. B. C.或 D.8.已知函数,若方程的解为,则()A. B. C. D.9.以下四个命题中,正确的是()A.若,则三点共线B.若为空间的一个基底,则构成空间的另一个基底C.D.为直角三角形的充要条件是10.如图,在中,,,,则的面积为()A. B. C. D.11.如图,正方体中,,,,分别为,,,的中点,则直线,所成角的大小为()A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.已知向量,满足,,,则与夹角的大小是______.14.若下框图所给的程序运行结果为S=20,那么判断框中应填入的关于整数k的条件是_______________15.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.16.已知函数,若对于任意的,均有成立,则实数a的取值范围为______.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.设数列{}的前项和为.已知=4,=2+1,.(Ⅰ)求通项公式;(Ⅱ)求数列{||}的前项和.18.在直三棱柱中,底面是直角三角形,,为侧棱的中点.(1)求异面直线、所成角的余弦值;(2)求二面角的平面角的余弦值.19.在平面直角坐标系xOy中,抛物线上异于坐标原点O的两不同动点A、B满足(如图所示).(Ⅰ)求得重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.20.已知函数.(Ⅰ)当a=2时,求f(x)的单调递减区间;(Ⅱ)若a>1,求f(x)在区间(0,+∞)上的极大值与极小值.21.随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中“x=1”表示2015年,“x=2”表示2016年,依次类推;y表示人数):x12345y(万人)2050100150180(1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;(2)该公司为了吸引网购者,特别推出“玩网络游戏,送免费购物券”活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进.若遥控车最终停在“胜利大本营”,则网购者可获得免费购物券500元;若遥控车最终停在“失败大本营”,则网购者可获得免费购物券200元.已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、…、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从到)若掷出偶数遥控车向前移动两格(从到),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.附:在线性回归方程中,.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在极坐标系中,已知直线l的极坐标方程为,圆C的圆心是,半径为1.求:(1)圆C的极坐标方程;(2)直线l被圆C所截得的弦长.23.选修4-5:不等式选讲函数(1)求不等式的解集;(2)若的最小值为,且实数满足,求证:2020新课标高考数学(理科)必刷卷(五)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则()A. B. C. D.2.命题,的否定为().A., B.,C., D.,3.若复数是纯虚数,则的值为()A. B. C. D.4.已知变量x,y满足2x-y≤0xA.2 B.32 C.23 D5.设,,是与的等差中项,则的最小值为()A. B. C. D.6.《中国好歌曲》的五位评委给一位歌手给出的评分分别是:,,,,,现将这五个数据依次输入如图程序框进行计算,则输出的值及其统计意义分别是()A.,即5个数据的方差为2 B.,即5个数据的标准差为2C.,即5个数据的方差为10 D.,即5个数据的标准差为107.十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为()A. B. C. D.8.椭圆的两个焦点为,,过的直线交椭圆于A、B两点,若,则的值为A.10 B.8 C.16 D.129.如图是一个几何体的三视图,根据图中的数据(单位:),可知此几何体的体积是()A. B.C. D.10.已知函数,将的图象上的所有点的横坐标缩短到原来的,纵坐标扩大为原来的倍,再把图象上所有的点向上平移个单位长度,得到函数的图象,则函数的周期可以为()A. B. C. D.11.过曲线的左焦点作曲线的切线,设切点为延长交曲线于点其中有一个共同的焦点,若则曲线的离心率为().A. B. C. D.12.函数满足,,若存在,使得成立,则的取值()A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.的展开式中的项的系数等于____________.15.四棱锥中,底面为矩形,,,且,当该四棱锥的体积最大时,其外接球的表面积为_________.16.已知函数,数列中,,则数列的前100项之和____.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.在中,角,,所对的边分别为,,,,(1)求证:;(2)若,的外接圆面积为,求的周长.18.某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:如果:尺寸数据在内的零件为合格品,频率作为概率.(1)从产品中随机抽取件,合格品的个数为,求的分布列与期望:(2)为了提高产品合格率,现提出,两种不同的改进方案进行试验,若按方案进行试验后,随机抽取件产品,不合格个数的期望是:若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?19.如图,四边形是边长为2的菱形,且,平面,,,点是线段上任意一点.(1)证明:平面平面;(2)若的最大值是,求三棱锥的体积.20.已知椭圆方程为,其右焦点与抛物线的焦点重合,过且垂直于抛物线对称轴的直线与椭圆交于、两点,与抛物线交于、两点.(1)求椭圆的方程;(2)若直线l与(1)中椭圆相交于,两点,直线,,的斜率分别为,,(其中),且,,成等比数列;设的面积为,以、为直径的圆的面积分别为,,求的取值范围.21.设函数,,其中,…为自然对数的底数.(1)当时,恒成立,求的取值范围;(2)求证:(参考数据:)(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(其中为参数).以为极点,轴的非负半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)设直线的极坐标方程是,射线:与曲线的交点为,与直线的交点为,求线段的长.23.选修4-5:不等式选讲已知函数,其中.(1)当时,解不等式;(2)若且,证明:.2020新课标高考数学(理科)必刷卷(六)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B. C. D.2.设,则A. B. C. D.3.若向量,,若,则A. B.12 C. D.34.设等差数列的前项和为,若,则等于A.18 B.36 C.45 D.605.在的展开式中,各项系数和与二项式系数和之比为,则的系数为()A.15 B.45 C.135 D.4056.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率为()A. B. C. D.7.在满足不等式组的平面内随机取一点,设事件A=“”,那么事件A发生的概率是()A. B. C. D.8.函数在区间上的图像大致为()A. B. C. D.9.九章算术》是中国古代数学名著,体现了古代劳动人民数学的智慧,其中第六章“均输”中,有一竹节容量问题,根据这一问题的思想设计了如下所示的程序框图,若输出的的值为35,则输入的的值为()A.4B.5C.7D.1110.一个多面体的直观图和三视图如图所示,点M是AB的中点,一只蝴蝶在几何体ADF-BCE内自由飞翔,则它飞入几何体F-AMCD内的概率为()A. B.C. D.11.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年12.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是()A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.已知是第二象限角,且,且______.14.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”,则下列有关说法中:①对于圆的所有非常数函数的太极函数中,都不能为偶函数;②函数是圆的一个太极函数;③直线所对应的函数一定是圆的太极函数;④若函数是圆的太极函数,则所有正确的是__________.15.已知点P(x,y)是抛物线y2=4x上任意一点,Q是圆(x+2)2+(y﹣4)2=1上任意一点,则|PQ|+x的最小值为_____.16.我们称一个数列是“有趣数列”,当且仅当该数列满足以下两个条件:①所有的奇数项满足,所有的偶数项满足;②任意相邻的两项,满足.根据上面的信息完成下面的问题:(i)数列__________“有趣数列”(填“是”或者“不是”);(ii)若,则数列__________“有趣数列”(填“是”或者“不是”).三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.某市规划一个平面示意图为如下图五边形的一条自行车赛道,,,,,为赛道(不考虑宽度),为赛道内的一条服务通道,,,.(1)求服务通道的长度;(2)当时,赛道的长度?18.如图,在四棱锥中,侧棱平面,为的中点,,,,.(1)求二面角的余弦值;(2)在线段上是否存在点,使得平面?若存在,求出点的位置,若不存在,说明理由.19.如图,已知抛物线的焦点是,准线是.(Ⅰ)写出焦点的坐标和准线的方程;(Ⅱ)已知点,若过点的直线交抛物线于不同的两点、(均与不重合),直线、分别交于点、求证:.20.2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评.2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.21.设函数为常数(1)若函数在上是单调函数,求的取值范围;(2)当时,证明.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线:,曲线:.(Ⅰ)求曲线,的直角坐标方程;(Ⅱ)已知曲线与轴交于,两点,为曲线上任一点,求的最小值.23.选修4-5:不等式选讲已知,,,证明:(1);(2).2020新课标高考数学(理科)必刷卷(七)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则A. B.C. D.2.已知复数,其中为虚数单位,则()A.9 B.3 C.5 D.3.已知向量a=(2,tanθ),b=(1,-1).且aA.2 B.-3 C.-3 D4.公差不为0的等差数列的前项和为,若,且,则的值为()A.15 B.21 C.23 D.255.若二项式的展开式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为()A.2 B. C. D.6.在中,()A. B. C. D.7.已知直线y=3-x与两坐标轴所围成的区域为Ω1,不等式组所围成的区域为Ω2,现在区域Ω1中随机放置一点,则该点落在区域Ω2内的概率是()A. B.C. D.8.已知a是实数,则函数的图象不可能是()A. B.C. D.9.《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该书完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该书中的“李白沽酒”问题,执行该程序框图,若输入的a值为5,则输出的值为()A.19 B.35 C.67 D.19810.已知四棱锥的三视图如图所示,则四棱锥的五个面中面积的最大值是()A.3 B.6 C.8 D.1011.如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为()A. B. C. D.12.已知函数(为自然对数的底数)在上有两个零点,则的范围是()A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.设是第三象限角,,则______.14.已知是定义在内的偶函数,且在上是增函数,设,,,则的小关系是______.15.已知圆C1:,圆C2:,M,N分别是圆C1,C2上的动点,P为轴上的动点,则的最小值_____.16.已知数列的首项,其前项和为,且,若单调递增,则的取值范围是__________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.的内角的对边分别为,已知.(1)求;(2)若平分线交于点,求的长.18.如图,已知抛物线的焦点是,准线是.(Ⅰ)写出焦点的坐标和准线的方程;(Ⅱ)已知点,若过点的直线交抛物线于不同的两点、(均与不重合),直线、分别交于点、求证:.19.如图,矩形中,,,、是边的三等分点.现将、分别沿、折起,使得平面、平面均与平面垂直.(1)若为线段上一点,且,求证:平面;(2)求二面角的正弦值.20.“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?某单位准备通过考试(按照高分优先录取的原则)录用名,其中个高薪职位和个普薪职位.实际报名人数为名,考试满分为分.(一般地,对于一次成功的考试来说,考试成绩应服从正态分布.)考试后考试成绩的部分统计结果如下:考试平均成绩是分,分及其以上的高分考生名.(1)最低录取分数是多少?(结果保留为整数)(2)考生甲的成绩为分,若甲被录取,能否获得高薪职位?若不能被录取,请说明理由.参考资料:(1)当时,令,则.(2)当时,,,.21.已知函数f(x)=(1)若a>0且函数f(x(2)若函数y=f(x)(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.23.选修4-5:不等式选讲(1)比较与的大小;(2)已知,且,求证:2020新课标高考数学(理科)必刷卷(八)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B. C. D.2.若,则()A. B. C. D.3.设有下面四个命题:若复数满足,则;:若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为A. B.C. D.4.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是()A.2.55尺 B.4.55尺 C.5.55尺 D.6.55尺5.函数在区间附近的图象大致形状是()A. B.C. D.6.在普通高中新课程改革中,某地实施“3+1+2”选课方案.该方案中“2”指的是从政治、地理、化学、生物4门学科中任选2门,假设每门学科被选中的可能性相等,那么政治和地里至少有一门被选中的概率是()A. B. C. D.7.若向量满足,且,则向量的夹角为()A.30° B.60° C.120° D.150°8.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入()A.是偶数?,? B.是奇数?,?C.是偶数?,? D.是奇数?,?9.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.10.已知椭圆的焦点为,,过的直线与交于两点.若,,则的方程为().A. B. C. D.11.设函数若关于x的方程恰好有六个不同的实数解,则实数a的取值范围为A.(2-2, B.(-2-2,2-2)C.(,+∞) D.(2-2,+∞)12.过球表面上一点引三条长度相等的弦、、,且、、两两夹角都为,若,则该球的体积为()A. B. C. D.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。把答案填在题中的横线上。13.曲线在点处的切线方程为______.14.记Sn为等比数列{an}的前n项和.若,则S4=___________.15.甲、乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去12,;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上12,这样就得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲获胜的概率为,则的取值范围是________16.已知双曲线:的左右焦点分别为,,过的直线与圆相切于点,且直线与双曲线的右支交于点,若,则双曲线的离心率为______.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17-21题为必做题,每个考生都必须作答.第22/23题为选考题,考生根据要求作答.(一)必考题:共60分17.如图所示,在中,的对边分别为a,b,c,已知,.(1)求b和;(2)如图,设D为AC边上一点,,求的面积.18.如图,三棱锥D-ABC中,,E,F分别为DB,AB的中点,且.(1)求证:平面平面ABC;(2)求二面角D-CE-F的余弦值.19.已知动圆过定点P(4,0),且在y轴上截得的弦MN的长为8.(1)求动圆圆心C的轨迹方程;(2)过点(2,0)的直线l与动圆圆心C的轨迹交于A,B两点,求证:是一个定值.20.已知函数在上的最大值为.(1)求的值;(2)证明:函数在区间上有且仅有2个零点.21.某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:方案一:逐瓶检验,则需检验次;方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.(i)若与的期望相等.试求关于的函数解析式;(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.参考数据:(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在极坐标系中,曲线C1的极坐标方程是,在以极点为原点O,极轴为x轴正半轴(两坐标系取相同的单位长度)的直角坐标系xOy中,曲线C2的参数方程为(θ为参数).(1)求曲线C1的直角坐标方程与曲线C2的普通方程;(2)将曲线C2经过伸缩变换后得到曲线C3,若M,N分别是曲线C1和曲线C3上的动点,求|MN|的最小值.23.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若的解集包含,求实数的取值范围.2020新课标高考数学(理科)必刷卷(九)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡的相应位置上。2.作答选择题时,选出每小题答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论