专题26一次函数(2)-2020年全国中考数学真题分项汇编(第02期全国通用)【无答案】_第1页
专题26一次函数(2)-2020年全国中考数学真题分项汇编(第02期全国通用)【无答案】_第2页
专题26一次函数(2)-2020年全国中考数学真题分项汇编(第02期全国通用)【无答案】_第3页
专题26一次函数(2)-2020年全国中考数学真题分项汇编(第02期全国通用)【无答案】_第4页
专题26一次函数(2)-2020年全国中考数学真题分项汇编(第02期全国通用)【无答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题26一次函数(2)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·西藏中考真题)如图,在平面直角坐标系中,直线y=x与反比例函数y=(x>0)的图象交于点A,将直线y=x沿y轴向上平移b个单位长度,交y轴于点B,交反比例函数图象于点C.若OA=2BC,则b的值为()A.1 B.2 C.3 D.42.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.63.(2020·浙江嘉兴?中考真题)一次函数y=2x﹣1的图象大致是()A. B. C. D.4.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,点在x轴正半轴上,点在直线上,若,且均为等边三角形,则线段的长度为()A. B. C. D.5.(2020·江苏泰州?中考真题)点在函数的图像上,则代数式的值等于()A. B. C. D.6.(2020·辽宁朝阳?中考真题)如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为()

A. B. C.42 D.7.(2020·江苏镇江?中考真题)一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是()A.第一 B.第二 C.第三 D.第四8.(2020·内蒙古鄂尔多斯?中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是()A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)B.第一班车从入口处到达花鸟馆所需的时间为10分钟C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)9.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为()A. B. C. D.10.(2020·辽宁沈阳?中考真题)一次函数的图象经过点,点,那么该图象不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限11.(2020·四川凉山?中考真题)已知一次函数y=(2m+1)x+m-3的图像不经过第二象限,则m的取值范围()A.m>- B.m<3 C.-<m<3 D.-<m≤312.(2020·黑龙江大庆?中考真题)已知正比例函数和反比例函数,在同一直角坐标系下的图象如图所示,其中符合的是()A.①② B.①④ C.②③ D.③④13.(2020·山东威海?中考真题)一次函数与反比例函数在同一坐标系中的图象可能是()A. B.C. D.14.(2020·湖南益阳?中考真题)一次函数的图象如图所示,则下列结论正确的是()A. B.C.随的增大而减小 D.当时,15.(2020·湖南永州?中考真题)已知点和直线,求点P到直线的距离d可用公式计算.根据以上材料解决下面问题:如图,的圆心C的坐标为,半径为1,直线l的表达式为,P是直线l上的动点,Q是上的动点,则的最小值是()A. B. C. D.216.(2020·湖北荆州?中考真题)在平面直角坐标系中,一次函数的图象是()A. B. C. D.17.(2020·广东广州?中考真题)一次函数的图象过点,,,则()A. B. C. D.18.(2020·广东广州?中考真题)直线不经过第二象限,则关于的方程实数解的个数是().A.0个 B.1个 C.2个 D.1个或2个19.(2020·青海中考真题)若,则正比例函数与反比例函数在同一平面直角坐标系中的大致图像可能是()A. B. C. D.20.(2020·四川中考真题)直线在平面直角坐标系中的位置如图所示,则不等式的解集是()A. B. C. D.21.(2020·四川中考真题)如图,在平面直角坐标系中,直线与双曲线交于、两点,是以点为圆心,半径长的圆上一动点,连结,为的中点.若线段长度的最大值为,则的值为()A. B. C. D.22.(2020·山东中考真题)数形结合是解决数学问题常用的思思方法.如图,直线y=x+5和直线y=ax+b,相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=1523.(2020·浙江中考真题)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2 B.y=x+2 C.y=4x+2 D.y=x+224.(2020·贵州中考真题)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B.C. D.25.(2020·浙江中考真题)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A. B.C. D.二、填空题26.(2020·江苏泰州?中考真题)如图,点在反比例函数的图像上且横坐标为,过点作两条坐标轴的平行线,与反比例函数的图像相交于点、,则直线与轴所夹锐角的正切值为______.27.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知,在x轴上取两点C,D(点C在点D左侧),且始终保持,线段在x轴上平移,当的值最小时,点C的坐标为________.28.(2020·辽宁丹东?中考真题)一次函数,且,则它的图象不经过第_________象限.29.(2020·黑龙江鹤岗?中考真题)如图,直线的解析式为与轴交于点,与轴交于点,以为边作正方形,点坐标为.过点作交于点,交轴于点,过点作轴的垂线交于点以为边作正方形,点的坐标为.过点作交于,交轴于点,过点作轴的垂线交于点,以为边作正方形,,则点的坐标______.30.(2020·四川绵阳?中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)31.(2020·江苏宿迁?中考真题)已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1_____x2(填“>”“<”或“=”).32.(2020·辽宁营口?中考真题)如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为_____.33.(2020·重庆中考真题)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚____分钟到达B地.34.(2020·山东东营?中考真题)已知一次函数y=kx+b的图象经过A(1,﹣1),B(﹣1,3)两点,则k0(填“>”或“<”)35.(2020·湖南益阳?中考真题)某公司新产品上市天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__________元.36.(2020·宁夏中考真题)如图,直线与x轴、y轴分别交于A、B两点,把绕点B逆时针旋转90°后得到,则点的坐标是_____.37.(2020·湖南郴州?中考真题)小红在练习仰卧起坐,本月日至日的成绩与日期具有如下关系:日期(日)成绩(个)小红的仰卧起坐成绩y与日期之间近似为一次函数关系,则该函数表达式为__________.38.(2020·贵州中考真题)如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为_____.39.(2020·四川初三学业考试)函数中,自变量的取值范围是_____.40.(2020·贵州中考真题)把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.41.(2020·贵州中考真题)如图,正比例函数的图象与一次函数y=-x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是________.42.(2020·山东初三学业考试)如图所示,一次函数(、为常数,且)的图象经过点,则不等式的解集为___.三、解答题43.(2020·广西河池?中考真题)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.44.(2020·辽宁大连?中考真题)甲、乙两个探测气球分别从海拔和处同时出发,匀速上升.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差时,求上升的时间.45.(2020·辽宁大连?中考真题)在平面直角坐标系中,函数和的图象关于y轴对称,它们与直线分别相交于点.(1)如图,函数为,当时,的长为_____;(2)函数为,当时,t的值为______;(3)函数为,①当时,求的面积;②若,函数和的图象与x轴正半轴分别交于点,当时,设函数的最大值和函数的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.46.(2020·辽宁鞍山?中考真题)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:每件售价x(元)…15161718…每天销售量y(件)…150140130120…(1)求y关于x的函数解析式;(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?47.(2020·辽宁朝阳?中考真题)如图,抛物线与x轴交于点A,点B,与y轴交于点C,抛物线的对称轴为直线,点C坐标为.(1)求抛物线表达式;(2)在抛物线上是否存在点P,使,如果存在,求出点P坐标;如果不存在,请说明理由;(3)在(2)的条件下,若点P在x轴上方,点M是直线BP上方抛物线上的一个动点,求点M到直线BP的最大距离;(4)点G是线段AC上的动点,点H是线段BC上的动点,点Q是线段AB上的动点,三个动点都不与点重合,连接,得到,直接写出周长的最小值.48.(2020·辽宁铁岭?中考真题)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量(本)与销售单价(元)之间满足一次函数关系,三对对应值如下表:销售单价(元)121416每周的销售量(本)500400300(1)求与之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为元(,且为整数),设每周销售该款笔记本所获利润为元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?49.(2020·辽宁丹东?中考真题)如图1,在平面直角坐标系中,抛物线与轴交于,两点,点坐标为,与轴交于点,直线与抛物线交于,两点.(1)求抛物线的函数表达式;(2)求的值和点坐标;(3)点是直线上方抛物线上的动点,过点作轴的垂线,垂足为,交直线于点,过点作轴的平行线,交于点,当是线段的三等分点时,求点坐标;(4)如图2,是轴上一点,其坐标为,动点从出发,沿轴正方向以每秒5个单位的速度运动,设的运动时间为(),连接,过作于点,以所在直线为对称轴,线段经轴对称变换后的图形为,点在运动过程中,线段的位置也随之变化,请直接写出运动过程中线段与抛物线有公共点时的取值范围.50.(2020·黑龙江鹤岗?中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克元,售价每千克16元;乙种蔬菜进价每千克元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求,的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的利润率不低于20%,求的最大值.51.(2020·黑龙江鹤岗?中考真题)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离(单位:千米)与快递车所用时间(单位:时)的函数图象,已知货车比快递车早小时出发,到达武汉后用小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚小时.(1)求的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)52.(2020·江苏镇江?中考真题)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.(1)n=,k=;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.53.(2020·山东滨州?中考真题)如图,在平面直角坐标系中,直线与直线相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求PAB的面积;(3)请把图象中直线在直线上方的部分描黑加粗,并写出此时自变量x的取值范围.54.(2020·内蒙古鄂尔多斯?中考真题)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.55.(2020·云南中考真题)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到地和地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地车型地(元/辆)地(元/辆)大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往地,其余前往地,设前往地的大货车有辆,这20辆货车的总运费为元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求与的函数解析式,并直接写出的取值范围;(3)若运往地的物资不少于140吨,求总运费的最小值.56.(2020·江苏宿迁?中考真题)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?57.(2020·辽宁沈阳?中考真题)如图,在平面直角坐标系中,的顶点是坐标原点,点的坐标为,点的坐标为,动点从开始以每秒1个单位长度的速度沿轴正方向运动,设运动的时间为t秒(),过点作轴,分别交于点,.(1)填空:的长为_____,的长为____(2)当时,求点的坐标:(3)请直接写出的长为_____(用含的代数式表示);(4)点是线段上一动点(点不与点重合),和的面积分别表示为和,当时,请直接写出(即与的积)的最大值为__________.58.(2020·四川眉山?中考真题)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买棵柏树和棵杉树共需元;购买棵柏树和棵杉树共需元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共棵,且柏树的棵数不少于杉树的倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?59.(2020·江苏南通?中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.60.(2020·辽宁营口?中考真题)在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.61.(2020·山东烟台?中考真题)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?62.(2020·黑龙江大庆?中考真题)如图,反比例函数与一次函数的图象在第二象限的交点为,在第四象限的交点为,直线(为坐标原点)与函数的图象交于另一点.过点作轴的平行线,过点作轴的平行线,两直线相交于点,的面积为6.(1)求反比例函数的表达式;(2)求点,的坐标和的面积.63.(2020·山东淄博?中考真题)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.64.(2020·甘肃金昌?中考真题)如图,在平面直角坐标系中,抛物线交轴于,两点,交轴于点,且,点是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若,求点的坐标;(3)连接,求面积的最大值及此时点的坐标.65.(2020·吉林长春?中考真题)已知、两地之间有一条长240千米的公路.甲车从地出发匀速开往地,甲车出发两小时后,乙车从地出发匀速开往地,两车同时到达各自的目的地.两车行驶的路程之和(千米)与甲车行驶的时间(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,的值为____________.(2)求乙车出发后,与之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.66.(2020·广西中考真题)如图1,在平面直角坐标系中,直线与直线相交于点,点是直线上的动点,过点作于点,点的坐标为,连接.设点的纵坐标为,的面积为.(1)当时,请直接写出点的坐标;(2)关于的函数解析式为其图象如图2所示,结合图1、2的信息,求出与的值;(3)在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.67.(2020·广西中考真题)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出型和型两款垃圾分拣机器人,已知台型机器人和台型机器人同时工作共分拣垃圾吨,台型机器人和台型机器人同时工作共分拣垃圾吨.(1)1台型机器人和台型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾吨.设购买型机器人台,型机器人台,请用含的代数式表示;(3)机器人公司的报价如下表:型号原价购买数量少于台购买数量不少于台型万元/台原价购买打九折型万元/台原价购买打八折在的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.68.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为.在整个过程中,油箱里的油量(单位:)与时间(单位:)之间的关系如图所示.(1)机器每分钟加油量为_____,机器工作的过程中每分钟耗油量为_____.(2)求机器工作时关于的函数解析式,并写出自变量的取值范围.(3)直接写出油箱中油量为油箱容积的一半时的值.69.(2020·山东东营?中考真题)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本售价(1)若该公司三月份的销售收入为万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.70.(2020·湖南益阳?中考真题)如图,在平面直角坐标系中,点的坐标是,点为一个动点,过点作轴的垂线,垂足为,点在运动过程中始终满足(提示:平面直角坐标系内点、的坐标分别为、,则)(1)判断点在运动过程中是否经过点C(0,5)(2)设动点的坐标为,求关于的函数表达式:填写下表,并在给定坐标系中画出函数的图象:............(3)点关于轴的对称点为,点在直线的下方时,求线段长度的取值范围71.(2020·湖南永州?中考真题)在平面直角坐标系中,等腰直角的直角顶点C在y轴上,另两个顶点A,B在x轴上,且,抛物线经过A,B,C三点,如图1所示.

(1)求抛物线所表示的二次函数表达式.(2)过原点任作直线l交抛物线于M,N两点,如图2所示.①求面积的最小值.②已知是抛物线上一定点,问抛物线上是否存在点P,使得点P与点Q关于直线l对称,若存在,求出点P的坐标及直线l的一次函数表达式;若不存在,请说明理由.72.(2020·湖北荆州?中考真题)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A地240吨,B地260吨,运费如下:(单位:吨)

(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.73.(2020·贵州毕节?中考真题)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高,用元购进的甲种书柜的数量比用元购进乙种书柜的数量少个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共个,其中乙种书柜的数量不大于甲种书柜数量的倍.该校应如何进货使得购进书柜所需费用最少?74.(2020·内蒙古呼和浩特?中考真题)已知某厂以小时/千克的速度匀速生产某种产品(生产条件要求),且每小时可获得利润元.(1)某人将每小时获得的利润设为y元,发现时,,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行分析说明;(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.75.(2020·广东广州?中考真题)平面直角坐标系中,抛物线过点,,,顶点不在第一象限,线段上有一点,设的面积为,的面积为,.(1)用含的式子表示;(2)求点的坐标;(3)若直线与抛物线的另一个交点的横坐标为,求在时的取值范围(用含的式子表示).76.(2020·黑龙江穆棱?朝鲜族学校中考真题)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是_____千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.77.(2020·黑龙江穆棱?朝鲜族学校中考真题)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.78.(2020·绍兴市柯桥区杨汛桥镇中学初三其他)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.79.(2020·湖北黄石?中考真题)如图,反比例函数的图象与正比例函数的图象相交于、B两点,点C在第四象限,BC∥x轴.(1)求k的值;(2)以、为边作菱形,求D点坐标.80.(2020·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线经过点A,与y轴交于点B,连接.(1)求b的值及点M的坐标;(2)将直线向下平移,得到过点M的直线,且与x轴负半轴交于点C,取点,连接,求证::(3)点E是线段上一动点,点F是线段上一动点,连接,线段的延长线与线段交于点G.当时,是否存在点E,使得?若存在,求出点E的坐标;若不存在,请说明理由.备用图81.(2020·内蒙古中考真题)某商店销售两种商品,A种商品的销售单价比B种商品的销售单价少40元,2件A种商品和3件B种商品的销售总额为820元.(1)求A种商品和B种商品的销售单价分别为多少元?(2)该商店计划购进两种商品共60件,且两种商品的进价总额不超过7800元,已知A种商品和B种商品的每件进价分别为110元和140元,应如何进货才能使这两种商品全部售出后总获利最多?82.(2020·内蒙古通辽?中考真题)某服装专卖店计划购进两种型号的精品服装.已知2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元.(1)求型服装的单价;(2)专卖店要购进两种型号服装60件,其中A型件数不少于B型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?83.(2020·广东深圳?中考真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?84.(2020·四川中考真题)如图,已知点在双曲线上,过点的直线与双曲线的另一支交于点.(1)求直线的解析式;(2)过点作轴于点,连结,过点作于点.求线段的长.85.(2020·山东中考真题)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?86.(2020·浙江初三学业考试)某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6℃,求该山峰的高度.87.(2020·湖南中考真题)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.88.(2020·浙江中考真题)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?89.(2020·浙江中考真题)如图1,在平面直角坐标系中,△ABC的顶点A,C分別是直线y=﹣x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.90.(2020·贵州中考真题)为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入=售价×销售数量)甲种型号乙种型号第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.91.(2020·浙江中考真题)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?92.(2020·浙江中考真题)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.751.001.502.753.253.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?93.(2020·浙江中考真题)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进单批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论