




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lecture3
IntroductoryDigitalcontrolLecturer:Dr.NingyunLUDepartmentofAutomaticControlNUAA,2007E-mail:C031006:ModernDigitalControlOutlineIntroductorydigitalcontrolDigitization->Emulation(3.1,3.3)Effectofsampling(3.2)MoreaboutthesamplingprocessAliasing&anti-aliasingSamplingtheorem(Chap5,11)Continuousvs.digitalcontrolBasically,wewanttosimulatethecont.filterD(s),calledEmulation?GivenacontinuouscontrollerD(s),whatisitsbestdigitalapproximation?D(s)containsdifferentialequations(timedomain)–mustbetranslatedintodifferenceequations.Analogcontrolsystemctrl.filterD(s)plantG(s)sensor1r(t)u(t)y(t)e(t)+-continuouscontrollerForexample,PIDcontrolTisthesampletime(s),Sampledsignal:x(kT)=x(k)
control:differenceequationsD/Aandholdsensor1r(t)u(kT)u(t)e(kT)+-r(kT)plantG(s)y(t)clockA/DTTy(kT)digitalcontrollervoltage→bitbit→voltageDigitalControlSystemElementsofdigitalcontrol-1Sampler:convertacontinuous-timesignalintoadiscrete-timesignal.ThevaluesofthesignalaresampledrepetitivelyatregularinstanceT(samplingperiodT,samplingrate1/T,frequency2pi/T)(timediscrete)Samplesofcontinuoussignalareconvertedinto(binary)numbersforprocessinginsideadigitalcomputer.(valuediscrete)Impulsesamplingx(t)x*(k)T2TImpulse-sampledoutputisasequenceofimpulses,withthestrengthofeachimpulseequalthemagnitudeofx(t)atthecorrespondingtimekTDefineatrainofunitimpulsesasT2TModulatorcarrierElementsofdigitalcontrol-2D/AandholdDigital-to-Analog(D/A)converter,toconvertabinarynumberintoanalogvoltagesHold,toholdvoltagesintoacontinuous-timesignal.Zero-OrderHoldx(t)x*(k)Zero-Orderholdh1(t)ApproximationApproximateadifferentialequationbyadifferenceequationusingtechniquessuchasEuler’smethodElementsofdigitalcontrol-3DifferenceEquationusingEuler’smethodUsingEuler’smethod,findthedifferenceequations.DifferentialequationUsingEuler’smethodDifferenceequationDigitalPIDusingEuler’smethodSignificanceofsamplingtimeTCompare–investigateusingMatlab1) Closedloopstepresponsewithcontinuouscontroller.2) Closedloopstepresponsewithdiscretecontroller. Samplerate=20Hz3) Closedloopstepresponsewithdiscretecontroller. Samplerate=40HzExample:controllerD(s)andplantG(s)MatlabimplementationcontinuouscontrollernumD=70*[12];denD=[110];numG=1;denG=[110];sysOL=tf(numD,denD)*tf(numG,denG);sysCL=feedback(sysOL,1);step(sysCL);discretecontrollernumD=70*[12];denD=[110];sysDd=c2d(tf(numD,denD),T);numG=1;denG=[110];sysOL=sysDd*tf(numG,denG);sysCL=feedback(sysOL,1);step(sysCL);ControllerD(s)andplantG(s)StepresponseswithdifferentsamplingrateEffectofsamplingD/AinoutputfromcontrollerThesinglemostimportantimpactofimplementingacontroldigitallyisthedelayassociatedwiththehold.AnalysisonsampletimedelayApproximately1/2sampletimedelayCanbeapprox.byPadè (andcont.analysisasusual)ctrl.filterD(s)PadéP(s)sensor1r(t)u(t)y(t)e(t)+-plantG(s)MoreaboutthesamplingprocessConsiderthecontinuous-timesignal•Thecorrespondingdiscrete-timesignaliswhereisthenormalizeddigitalangularfrequencyofAliasing–anexample•Thethreecontinuous-timesignalsoffrequencies3Hz,7Hz,and13Hz,aresampledatasamplingrateof10Hz,i.e.withT=0.1sec.generatingthethreesequences•Plotsofthesesequences(shownwithcircles)andtheirparenttimefunctionsareshownbelow:NotethateachsequencehasexactlythesamesamplevalueforanygivenkWhy?ThisfactcanalsobeverifiedbyobservingthatAsaresult,allthreesequencesareidenticalanditisdifficulttoassociateauniquecontinuous-timefunctionwitheachofthesesequencesTheabovephenomenonofacontinuoustimesignalofhigherfrequencyacquiringtheidentityofasinusoidalsequenceoflowerfrequencyaftersamplingiscalledaliasing•Sincethereareaninfinitenumberofcontinuous-timesignalsthatcanleadtothesamesequencewhensampledperiodically,additionalconditionsneedtoimposedsothatthesequencecanuniquelyrepresenttheparentcontinuoustimesignalAnti-aliasing?•RecallThusif ,thenthecorrespondingnormalizeddigitalangularfrequency ofthediscrete-timesignalobtainedbysamplingtheparentcontinuous-timesinusoidalsignalwillbeintherange
NoaliasingAnalysisAnalysis(cont.)Ontheotherhand,if ,thenormalizeddigitalangularfrequencywillfoldoverintoalowerdigitalfrequencyintherangebecauseofaliasingTopreventaliasing,thesamplingfrequency shouldbegreaterthan2timesthefrequency ofthesinusoidalsignalbeingsampledTheconditiontobesatisfiedbythesamplingfrequencytopreventaliasingiscalledthesamplingtheoremSamplingTheoremNyquistsamplingtheoremOnecanrecoverasignalfromitssamplesifthesamplingfrequencyfs=1/T(ws=2p/T)isatleasttwicethehighestfrequencyinthesignal,i.e.ws>2w0(closedloopband-width)Inpractice,weneed 20w0<ws<40w0
GraphicalExplanationofSamplingtheoremToshowthevalidityofthesamplingtheorem,wefirstshouldfindthefrequencyspectrumofthesampledsignalx*(t)x(t)x*(k)0ω1-ω1101/T01/T1010ω1-ω1101/T0ω1-ω11/TIdealLow-PassfilterX(s)X*(s)Y(s)X*(s)01/TFolding:Thephenomenonoftheoverlapinthefrequencyspectraisknownasfolding01/TSummaryDigitizationmethodsallowthedesignertoconvertacontinuouscompensationD(s)intoasetofdifferenceequationsthatcanbeprogrammeddirectlyintoacontrolcomputerEuler’smethodcanbeusedforthedigitizationWhenthesamplerateisfastenough(30*bandwidth),thedigitallycontrolledsystemwillbehaveclosetoits
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- otc活动策划方案(3篇)
- 中职食堂饭菜管理方案(3篇)
- 媒介投放规划方案(3篇)
- DB23-T2901-2021-草原草本植物标本制作技术规程-黑龙江省
- 公司市场人员管理制度
- 公司员工信息管理制度
- 城市管线普查方案(3篇)
- 寄递物流管理管理制度
- 宾馆用电安全管理制度
- 农村超市收购方案(3篇)
- 煤矿托管经营框架协议书
- 2025中考英语临考押题卷(长沙卷)(解析版)
- 联大学堂《人力资源管理薪酬管理(河南理工大学)》题库附答案
- 静脉血栓栓塞症预防知识考核试题及答案
- 高考常考文言实词分类高考常考的文言文实词知识点
- 【KAWO科握】2025年中国社交媒体平台指南报告
- 儿童语言发展路径与行为特征分析-洞察阐释
- 中建生产培训
- 卫生院传染病知识培训
- 云南2025年云南省社会科学院中国(昆明)南亚东南亚研究院招聘笔试历年参考题库附带答案详解
- 2025重庆市万州区龙沙镇社区工作者考试真题
评论
0/150
提交评论