版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17讲数列的通项、求和及数列不等式的证明真题展示2022新高考一卷第17题记SKIPIF1<0为数列SKIPIF1<0的前SKIPIF1<0项和,已知SKIPIF1<0,SKIPIF1<0是公差为SKIPIF1<0的等差数列.(1)求SKIPIF1<0的通项公式;(2)证明:SKIPIF1<0.【思路分析】(1)直接利用数列的递推关系式的应用求出数列的通项公式;(2)利用(1)的结论,进一步利用裂项相消法的应用求出数列的和,进一步利用放缩法的应用求出结果.【解析】(1)解:【解法一】(隔项累乘法):已知SKIPIF1<0,SKIPIF1<0是公差为SKIPIF1<0的等差数列,所以SKIPIF1<0,整理得SKIPIF1<0,①,故当SKIPIF1<0时,SKIPIF1<0,②,①SKIPIF1<0②得:SKIPIF1<0,故SKIPIF1<0,化简得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;所以SKIPIF1<0,故SKIPIF1<0(首项符合通项).所以SKIPIF1<0.【解法二】(王安寓补解)(相邻累乘):仿法一得SKIPIF1<0,∴SKIPIF1<0=QUOTEa1∙a2a1∙a3a2∙…∙anan-11×SKIPIF1<0QUOTE2×31×2=SKIPIF1<0显然n=1时SKIPIF1<0=1适合上式,故SKIPIF1<0=QUOTEn(n+1)2SKIPIF1<0.【解法三】(王安寓补解)(构造常数列):仿法一得(n−1)SKIPIF1<0=(n+1)SKIPIF1<0,即n(n−1)SKIPIF1<0=(n+1)nSKIPIF1<0,SKIPIF1<0,故{SKIPIF1<0}是常数列,∴SKIPIF1<0=SKIPIF1<0,∴SKIPIF1<0=QUOTEn(n+1)2SKIPIF1<0.(2)证明:由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【试题评价】本题考查的知识要点:数列的递推关系式,数列的通项公式的求法,数列的求和,裂项相消法在数列求和中的应用,主要考查学生的运算能力和数学思维能力,属于中档题.试题亮点试题以考生熟悉的等差数列为载体而设计,但不是通常的给定等差数列求通项、求和等常规操作,而是将等差数列的性质融合在前n项和与通项的关系之中,特别是第(2)问中的数列的求和运算涉及裂项相消.试题源于教材、其创新思想又高于教材,充分体现高考的选拔功能.试题对高中数学教学具有指导作用,要求考生在强化基本功的同时,加强对知识的灵活运用,形成学科素养.知识要点整理数列求和问题数列求和是数列问题中的基本题型,是数列部分的重点内容,在高考中也占据重要地位,它具有复杂多变、综合性强、解法灵活等特点.数列求和的方法主要有公式法、分组转化法、倒序相加法、错位相减法、裂项相消法、并项求和法等.一、公式法求和例1求数列1,3+5,7+9+11,13+15+17+19,…的前n项和.解所求数列的前n项中共有1+2+3+4+…+n=eq\f(nn+1,2)个连续的奇数,这些奇数组成等差数列,首项为1,公差为2,故该数列的前n项和Sn=eq\f(nn+1,2)×1+eq\f(1,2)×eq\f(nn+1,2)×eq\b\lc\[\rc\](\a\vs4\al\co1(\f(nn+1,2)-1))×2=eq\f(nn+1,2)+eq\f(nn+1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(nn+1,2)-1))=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(nn+1,2)))2=eq\f(n2n+12,4).反思感悟公式法求和中的常用公式有(1)等差、等比数列的前n项和①等差数列:Sn=na1+eq\f(nn-1,2)d(d为公差)或Sn=eq\f(na1+an,2).②等比数列:Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(na1,q=1,,\f(a11-qn,1-q)=\f(a1-anq,1-q),q≠1,))其中q为公比.(2)四类特殊数列的前n项和①1+2+3+…+n=eq\f(1,2)n(n+1).②1+3+5+…+(2n-1)=n2.③12+22+32+…+n2=eq\f(1,6)n(n+1)(2n+1).④13+23+33+…+n3=eq\f(1,4)n2(n+1)2.二、分组转化法求和例2求和:Sn=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(x2+\f(1,x2)))2+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(xn+\f(1,xn)))2(x≠0).解当x≠±1时,Sn=eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(x2+\f(1,x2)))2+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(xn+\f(1,xn)))2=eq\b\lc\(\rc\)(\a\vs4\al\co1(x2+2+\f(1,x2)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(x4+2+\f(1,x4)))+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(x2n+2+\f(1,x2n)))=(x2+x4+…+x2n)+2n+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x2)+\f(1,x4)+…+\f(1,x2n)))=eq\f(x2x2n-1,x2-1)+eq\f(x-21-x-2n,1-x-2)+2n=eq\f(x2n-1x2n+2+1,x2nx2-1)+2n;当x=±1时,Sn=4n.综上可知,Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(4n,x=±1,,\f(x2n-1x2n+2+1,x2nx2-1)+2n,x≠±1且x≠0.))反思感悟某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.三、倒序相加法求和例3设F(x)=eq\f(4x,4x+2),求Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2021)))+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,2021)))+…+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2020,2021))).解∵F(x)+F(1-x)=eq\f(4x,4x+2)+eq\f(41-x,41-x+2)=1,∴Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2021)))+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2020,2021)))=Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,2021)))+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2019,2021)))=…=1.设Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2021)))+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,2021)))+…+Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2020,2021)))=S,∴S=eq\f(1,2)×2S=eq\f(1,2)×2020=1010.反思感悟(1)倒序相加法类比推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an).(2)如果一个数列{an},首末两端等“距离”的两项的和相等,那么求其和可以用倒序相加法.四、裂项相消法求和例4求和:eq\f(1,22-1)+eq\f(1,32-1)+eq\f(1,42-1)+…+eq\f(1,n2-1),n≥2,n∈N*.解∵eq\f(1,n2-1)=eq\f(1,n-1n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n-1)-\f(1,n+1))),∴原式=eq\f(1,2)eq\b\lc\[\rc\(\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,3)))+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)-\f(1,4)))+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)-\f(1,5)))))eq\b\lc\\rc\](\a\vs4\al\co1(+…+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n-1)-\f(1,n+1)))))=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,2)-\f(1,n)-\f(1,n+1)))=eq\f(3,4)-eq\f(2n+1,2nn+1)(n≥2,n∈N*).延伸探究求和:eq\f(22,22-1)+eq\f(32,32-1)+eq\f(42,42-1)+…+eq\f(n2,n2-1),n≥2,n∈N*.解∵eq\f(n2,n2-1)=eq\f(n2-1+1,n2-1)=1+eq\f(1,n2-1),∴原式=eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,22-1)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,32-1)))+eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,42-1)))+…+eq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,n2-1)))=(n-1)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,22-1)+\f(1,32-1)+\f(1,42-1)+…+\f(1,n2-1)))以下同例4解法.∴原式=n-eq\f(1,4)-eq\f(2n+1,2nn+1)(n≥2,n∈N*)反思感悟(1)对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法,可用待定系数法对通项公式拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项.(2)常见的拆项公式有①eq\f(1,nn+1)=eq\f(1,n)-eq\f(1,n+1).②eq\f(1,nn+k)=eq\f(1,k)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,n)-\f(1,n+k))).③eq\f(1,2n-12n+1)=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2n-1)-\f(1,2n+1))).④eq\f(1,\r(n)+\r(n+1))=eq\r(n+1)-eq\r(n).⑤eq\f(1,nn+1n+2)=eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,nn+1)-\f(1,n+1n+2))).五、错位相减法求和例5已知{an}是等比数列,{bn}是等差数列,且a1=1,b1=3,a2+b2=7,a3+b3=11.(1)求数列{an}和{bn}的通项公式;(2)设cn=eq\f(bn,an),n∈N*,求数列{cn}的前n项和Tn.解(1)设等比数列{an}的公比为q(q≠0),等差数列{bn}的公差为d,依题意有eq\b\lc\{\rc\(\a\vs4\al\co1(a2+b2=q+3+d=7,,a3+b3=q2+3+2d=11,))即eq\b\lc\{\rc\(\a\vs4\al\co1(q+d=4,,q2+2d=8,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(q=2,,d=2))或eq\b\lc\{\rc\(\a\vs4\al\co1(q=0,,d=4))(舍去).所以an=2n-1,n∈N*,bn=3+2(n-1)=2n+1,n∈N*.(2)由(1)得cn=eq\f(bn,an)=eq\f(2n+1,2n-1),所以Tn=eq\f(3,1)+eq\f(5,2)+…+eq\f(2n+1,2n-1),①所以eq\f(1,2)Tn=eq\f(3,2)+eq\f(5,22)+…+eq\f(2n-1,2n-1)+eq\f(2n+1,2n),②由①-②,得eq\f(1,2)Tn=3+2eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)+\f(1,22)+…+\f(1,2n-1)))-eq\f(2n+1,2n)=3+2×eq\f(\f(1,2)\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2n-1))),1-\f(1,2))-eq\f(2n+1,2n)=5-eq\f(2n+5,2n),所以Tn=10-eq\f(2n+5,2n-1).反思感悟一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便于下一步准确写出“Sn-qSn”的表达式.六、并项求和法求和例6求和:Sn=-1+3-5+7-…+(-1)n(2n-1).解当n为奇数时,Sn=(-1+3)+(-5+7)+(-9+11)+…+[(-2n+5)+(2n-3)]+(-2n+1)=2·eq\f(n-1,2)+(-2n+1)=-n.当n为偶数时,Sn=(-1+3)+(-5+7)+…+[(-2n+3)+(2n-1)]=2·eq\f(n,2)=n.∴Sn=(-1)n·n(n∈N*).反思感悟通项中含有(-1)n的数列求前n项和时可以考虑使用奇偶并项法,分项数为奇数和偶数分别进行求和.三年真题1.设SKIPIF1<0是等差数列,SKIPIF1<0是等比数列,且SKIPIF1<0.(1)求SKIPIF1<0与SKIPIF1<0的通项公式;(2)设SKIPIF1<0的前n项和为SKIPIF1<0,求证:SKIPIF1<0;(3)求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)证明见解析(3)SKIPIF1<0【详解】(1)设SKIPIF1<0公差为d,SKIPIF1<0公比为SKIPIF1<0,则SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0(SKIPIF1<0舍去),所以SKIPIF1<0;(2)证明:因为SKIPIF1<0所以要证SKIPIF1<0,即证SKIPIF1<0,即证SKIPIF1<0,即证SKIPIF1<0,而SKIPIF1<0显然成立,所以SKIPIF1<0;(3)因为SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,设SKIPIF1<0所以SKIPIF1<0,则SKIPIF1<0,作差得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.2.已知SKIPIF1<0为等差数列,SKIPIF1<0是公比为2的等比数列,且SKIPIF1<0.(1)证明:SKIPIF1<0;(2)求集合SKIPIF1<0中元素个数.【答案】(1)证明见解析;(2)SKIPIF1<0.【详解】(1)设数列SKIPIF1<0的公差为SKIPIF1<0,所以,SKIPIF1<0,即可解得,SKIPIF1<0,所以原命题得证.(2)由(1)知,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,亦即SKIPIF1<0,解得SKIPIF1<0,所以满足等式的解SKIPIF1<0,故集合SKIPIF1<0中的元素个数为SKIPIF1<0.3.已知等差数列SKIPIF1<0的首项SKIPIF1<0,公差SKIPIF1<0.记SKIPIF1<0的前n项和为SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0;(2)若对于每个SKIPIF1<0,存在实数SKIPIF1<0,使SKIPIF1<0成等比数列,求d的取值范围.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【详解】(1)因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,(2)因为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由已知方程SKIPIF1<0的判别式大于等于0,所以SKIPIF1<0,所以SKIPIF1<0对于任意的SKIPIF1<0恒成立,所以SKIPIF1<0对于任意的SKIPIF1<0恒成立,当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,由SKIPIF1<0,可得SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<04.已知函数SKIPIF1<0.(1)当SKIPIF1<0时,讨论SKIPIF1<0的单调性;(2)当SKIPIF1<0时,SKIPIF1<0,求a的取值范围;(3)设SKIPIF1<0,证明:SKIPIF1<0.【答案】(1)SKIPIF1<0的减区间为SKIPIF1<0,增区间为SKIPIF1<0.(2)SKIPIF1<0(3)见解析【详解】(1)当SKIPIF1<0时,SKIPIF1<0,则SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,故SKIPIF1<0的减区间为SKIPIF1<0,增区间为SKIPIF1<0.(2)设SKIPIF1<0,则SKIPIF1<0,又SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0,因为SKIPIF1<0为连续不间断函数,故存在SKIPIF1<0,使得SKIPIF1<0,总有SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0为增函数,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0为增函数,故SKIPIF1<0,与题设矛盾.若SKIPIF1<0,则SKIPIF1<0,下证:对任意SKIPIF1<0,总有SKIPIF1<0成立,证明:设SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上为减函数,故SKIPIF1<0即SKIPIF1<0成立.由上述不等式有SKIPIF1<0,故SKIPIF1<0总成立,即SKIPIF1<0在SKIPIF1<0上为减函数,所以SKIPIF1<0.当SKIPIF1<0时,有SKIPIF1<0,
所以SKIPIF1<0在SKIPIF1<0上为减函数,所以SKIPIF1<0.综上,SKIPIF1<0.(3)取SKIPIF1<0,则SKIPIF1<0,总有SKIPIF1<0成立,令SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0对任意的SKIPIF1<0恒成立.所以对任意的SKIPIF1<0,有SKIPIF1<0,整理得到:SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.5.记SKIPIF1<0为数列SKIPIF1<0的前n项和.已知SKIPIF1<0.(1)证明:SKIPIF1<0是等差数列;(2)若SKIPIF1<0成等比数列,求SKIPIF1<0的最小值.【答案】(1)证明见解析;(2)SKIPIF1<0.【详解】(1)因为SKIPIF1<0,即SKIPIF1<0①,当SKIPIF1<0时,SKIPIF1<0②,①SKIPIF1<0②得,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,当SKIPIF1<0或SKIPIF1<0时,SKIPIF1<0.[方法二]:【最优解】邻项变号法由(1)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比数列,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0.则当SKIPIF1<0或SKIPIF1<0时,SKIPIF1<0.【整体点评】(2)法一:根据二次函数的性质求出SKIPIF1<0的最小值,适用于可以求出SKIPIF1<0的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.已知SKIPIF1<0为有穷整数数列.给定正整数m,若对任意的SKIPIF1<0,在Q中存在SKIPIF1<0,使得SKIPIF1<0,则称Q为SKIPIF1<0连续可表数列.(1)判断SKIPIF1<0是否为SKIPIF1<0连续可表数列?是否为SKIPIF1<0连续可表数列?说明理由;(2)若SKIPIF1<0为SKIPIF1<0连续可表数列,求证:k的最小值为4;(3)若SKIPIF1<0为SKIPIF1<0连续可表数列,且SKIPIF1<0,求证:SKIPIF1<0.【答案】(1)是SKIPIF1<0连续可表数列;不是SKIPIF1<0连续可表数列.(2)证明见解析.(3)证明见解析.【详解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0连续可表数列;易知,不存在SKIPIF1<0使得SKIPIF1<0,所以SKIPIF1<0不是SKIPIF1<0连续可表数列.(2)若SKIPIF1<0,设为SKIPIF1<0SKIPIF1<0,则至多SKIPIF1<0,6个数字,没有SKIPIF1<0个,矛盾;当SKIPIF1<0时,数列SKIPIF1<0,满足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(3)SKIPIF1<0,若SKIPIF1<0最多有SKIPIF1<0种,若SKIPIF1<0,最多有SKIPIF1<0种,所以最多有SKIPIF1<0种,若SKIPIF1<0,则SKIPIF1<0至多可表SKIPIF1<0个数,矛盾,从而若SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0至多可表SKIPIF1<0个数,而SKIPIF1<0,所以其中有负的,从而SKIPIF1<0可表1~20及那个负数(恰21个),这表明SKIPIF1<0中仅一个负的,没有0,且这个负的在SKIPIF1<0中绝对值最小,同时SKIPIF1<0中没有两数相同,设那个负数为SKIPIF1<0,则所有数之和SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再考虑排序,排序中不能有和相同,否则不足SKIPIF1<0个,SKIPIF1<0(仅一种方式),SKIPIF1<0与2相邻,若SKIPIF1<0不在两端,则SKIPIF1<0形式,若SKIPIF1<0,则SKIPIF1<0(有2种结果相同,方式矛盾),SKIPIF1<0,同理SKIPIF1<0,故SKIPIF1<0在一端,不妨为SKIPIF1<0形式,若SKIPIF1<0,则SKIPIF1<0(有2种结果相同,矛盾),SKIPIF1<0同理不行,SKIPIF1<0,则SKIPIF1<0(有2种结果相同,矛盾),从而SKIPIF1<0,由于SKIPIF1<0,由表法唯一知3,4不相邻,、故只能SKIPIF1<0,①或SKIPIF1<0,②这2种情形,对①:SKIPIF1<0,矛盾,对②:SKIPIF1<0,也矛盾,综上SKIPIF1<0,当SKIPIF1<0时,数列SKIPIF1<0满足题意,SKIPIF1<0.【点睛】关键点睛,先理解题意,是否为SKIPIF1<0可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从SKIPIF1<0到SKIPIF1<0中间的任意一个值.本题第二问SKIPIF1<0时,通过和值可能个数否定SKIPIF1<0;第三问先通过和值的可能个数否定SKIPIF1<0,再验证SKIPIF1<0时,数列中的几项如果符合必然是SKIPIF1<0的一个排序,可验证这组数不合题.7.记SKIPIF1<0为数列SKIPIF1<0的前n项和,已知SKIPIF1<0是公差为SKIPIF1<0的等差数列.(1)求SKIPIF1<0的通项公式;(2)证明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)见解析【详解】(1)∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0是公差为SKIPIF1<0的等差数列,∴SKIPIF1<0,∴SKIPIF1<0,∴当SKIPIF1<0时,SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,显然对于SKIPIF1<0也成立,∴SKIPIF1<0的通项公式SKIPIF1<0;(2)SKIPIF1<0∴SKIPIF1<0SKIPIF1<08.已知SKIPIF1<0是公差为2的等差数列,其前8项和为64.SKIPIF1<0是公比大于0的等比数列,SKIPIF1<0.(I)求SKIPIF1<0和SKIPIF1<0的通项公式;(II)记SKIPIF1<0,(i)证明SKIPIF1<0是等比数列;(ii)证明SKIPIF1<0【答案】(I)SKIPIF1<0,SKIPIF1<0;(II)(i)证明见解析;(ii)证明见解析.【详解】(I)因为SKIPIF1<0是公差为2的等差数列,其前8项和为64.所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;设等比数列SKIPIF1<0的公比为SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0(负值舍去),所以SKIPIF1<0;(II)(i)由题意,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以数列SKIPIF1<0是等比数列;(ii)由题意知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,两式相减得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【点睛】关键点点睛:最后一问考查数列不等式的证明,因为SKIPIF1<0无法直接求解,应先放缩去除根号,再由错位相减法即可得证.9.记SKIPIF1<0是公差不为0的等差数列SKIPIF1<0的前n项和,若SKIPIF1<0.(1)求数列SKIPIF1<0的通项公式SKIPIF1<0;(2)求使SKIPIF1<0成立的n的最小值.【答案】(1)SKIPIF1<0;(2)7.【分析】(1)由题意首先求得SKIPIF1<0的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.【详解】(1)由等差数列的性质可得:SKIPIF1<0,则:SKIPIF1<0,设等差数列的公差为SKIPIF1<0,从而有:SKIPIF1<0,SKIPIF1<0,从而:SKIPIF1<0,由于公差不为零,故:SKIPIF1<0,数列的通项公式为:SKIPIF1<0.(2)由数列的通项公式可得:SKIPIF1<0,则:SKIPIF1<0,则不等式SKIPIF1<0即:SKIPIF1<0,整理可得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0为正整数,故SKIPIF1<0的最小值为SKIPIF1<0.10.设p为实数.若无穷数列SKIPIF1<0满足如下三个性质,则称SKIPIF1<0为SKIPIF1<0数列:①SKIPIF1<0,且SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0.(1)如果数列SKIPIF1<0的前4项为2,-2,-2,-1,那么SKIPIF1<0是否可能为SKIPIF1<0数列?说明理由;(2)若数列SKIPIF1<0是SKIPIF1<0数列,求SKIPIF1<0;(3)设数列SKIPIF1<0的前SKIPIF1<0项和为SKIPIF1<0.是否存在SKIPIF1<0数列SKIPIF1<0,使得SKIPIF1<0恒成立?如果存在,求出所有的p;如果不存在,说明理由.【答案】(1)不可以是SKIPIF1<0数列;理由见解析;(2)SKIPIF1<0;(3)存在;SKIPIF1<0.【详解】(1)因为SKIPIF1<0所以SKIPIF1<0,因为SKIPIF1<0所以SKIPIF1<0所以数列SKIPIF1<0,不可能是SKIPIF1<0数列.(2)性质①SKIPIF1<0,由性质③SKIPIF1<0,因此SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,由性质②可知SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,矛盾;若SKIPIF1<0,由SKIPIF1<0有SKIPIF1<0,矛盾.因此只能是SKIPIF1<0.又因为SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.若SKIPIF1<0,则SKIPIF1<0,不满足SKIPIF1<0,舍去.当SKIPIF1<0,则SKIPIF1<0前四项为:0,0,0,1,下面用数学归纳法证明SKIPIF1<0:当SKIPIF1<0时,经验证命题成立,假设当SKIPIF1<0时命题成立,当SKIPIF1<0时:若SKIPIF1<0,则SKIPIF1<0,利用性质③:SKIPIF1<0,此时可得:SKIPIF1<0;否则,若SKIPIF1<0,取SKIPIF1<0可得:SKIPIF1<0,而由性质②可得:SKIPIF1<0,与SKIPIF1<0矛盾.同理可得:SKIPIF1<0,有SKIPIF1<0;SKIPIF1<0,有SKIPIF1<0;SKIPIF1<0,又因为SKIPIF1<0,有SKIPIF1<0即当SKIPIF1<0时命题成立,证毕.综上可得:SKIPIF1<0,SKIPIF1<0.(3)令SKIPIF1<0,由性质③可知:SKIPIF1<0SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,因此数列SKIPIF1<0为SKIPIF1<0数列.由(2)可知:若SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,此时SKIPIF1<0,SKIPIF1<0,满足题意.11.记SKIPIF1<0为数列SKIPIF1<0的前n项和,已知SKIPIF1<0,且数列SKIPIF1<0是等差数列,证明:SKIPIF1<0是等差数列.【答案】证明见解析.【详解】∵数列SKIPIF1<0是等差数列,设公差为SKIPIF1<0SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴当SKIPIF1<0时,SKIPIF1<0当SKIPIF1<0时,SKIPIF1<0,满足SKIPIF1<0,∴SKIPIF1<0的通项公式为SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0是等差数列.12.已知数列SKIPIF1<0的前n项和为SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求数列SKIPIF1<0的通项;(2)设数列SKIPIF1<0满足SKIPIF1<0,记SKIPIF1<0的前n项和为SKIPIF1<0,若SKIPIF1<0对任意SKIPIF1<0恒成立,求实数SKIPIF1<0的取值范围.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【详解】(1)当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0,当SKIPIF1<0时,由SKIPIF1<0①,得SKIPIF1<0②,①SKIPIF1<0②得SKIPIF1<0SKIPIF1<0,又SKIPIF1<0是首项为SKIPIF1<0,公比为SKIPIF1<0的等比数列,SKIPIF1<0;(2)由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,两式相减得SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0恒成立,即SKIPIF1<0恒成立,SKIPIF1<0时不等式恒成立;SKIPIF1<0时,SKIPIF1<0,得SKIPIF1<0;SKIPIF1<0时,SKIPIF1<0,得SKIPIF1<0;所以SKIPIF1<0.【点睛】易错点点睛:(1)已知SKIPIF1<0求SKIPIF1<0不要忽略SKIPIF1<0情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中SKIPIF1<0恒成立,要对SKIPIF1<0讨论,还要注意SKIPIF1<0时,分离参数不等式要变号.13.记SKIPIF1<0为数列SKIPIF1<0的前n项和,SKIPIF1<0为数列SKIPIF1<0的前n项积,已知SKIPIF1<0.(1)证明:数列SKIPIF1<0是等差数列;(2)求SKIPIF1<0的通项公式.【答案】(1)证明见解析;(2)SKIPIF1<0.【详解】(1)[方法一]:由已知SKIPIF1<0得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由于SKIPIF1<0为数列SKIPIF1<0的前n项积,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0所以数列SKIPIF1<0是以SKIPIF1<0为首项,以SKIPIF1<0为公差等差数列;[方法二]【最优解】:由已知条件知SKIPIF1<0
①于是SKIPIF1<0.
②由①②得SKIPIF1<0.
③又SKIPIF1<0,
④由③④得SKIPIF1<0.令SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.所以数列SKIPIF1<0是以SKIPIF1<0为首项,SKIPIF1<0为公差的等差数列.[方法三]:
由SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.在SKIPIF1<0中,当SKIPIF1<0时,SKIPIF1<0.故数列SKIPIF1<0是以SKIPIF1<0为首项,SKIPIF1<0为公差的等差数列.[方法四]:数学归纳法
由已知SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,猜想数列SKIPIF1<0是以SKIPIF1<0为首项,SKIPIF1<0为公差的等差数列,且SKIPIF1<0.下面用数学归纳法证明.当SKIPIF1<0时显然成立.假设当SKIPIF1<0时成立,即SKIPIF1<0.那么当SKIPIF1<0时,SKIPIF1<0SKIPIF1<0.综上,猜想对任意的SKIPIF1<0都成立.即数列SKIPIF1<0是以SKIPIF1<0为首项,SKIPIF1<0为公差的等差数列.(2)由(1)可得,数列SKIPIF1<0是以SKIPIF1<0为首项,以SKIPIF1<0为公差的等差数列,SKIPIF1<0,SKIPIF1<0,当n=1时,SKIPIF1<0,当n≥2时,SKIPIF1<0,显然对于n=1不成立,∴SKIPIF1<0.【整体点评】(1)方法一从SKIPIF1<0得SKIPIF1<0,然后利用SKIPIF1<0的定义,得到数列SKIPIF1<0的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从SKIPIF1<0的定义,替换相除得到SKIPIF1<0,再结合SKIPIF1<0得到SKIPIF1<0,从而证得结论,为最优解;方法三由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0的定义得SKIPIF1<0,进而作差证得结论;方法四利用归纳猜想得到数列SKIPIF1<0,然后利用数学归纳法证得结论.(2)由(1)的结论得到SKIPIF1<0,求得SKIPIF1<0的表达式,然后利用和与项的关系求得SKIPIF1<0的通项公式;14.已知数列SKIPIF1<0的各项均为正数,记SKIPIF1<0为SKIPIF1<0的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列SKIPIF1<0是等差数列:②数列SKIPIF1<0是等差数列;③SKIPIF1<0.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】证明过程见解析【详解】选①②作条件证明③:[方法一]:待定系数法+SKIPIF1<0与SKIPIF1<0关系式设SKIPIF1<0,则SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0SKIPIF1<0;因为SKIPIF1<0也是等差数列,所以SKIPIF1<0,解得SKIPIF1<0;所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.[方法二]:待定系数法设等差数列SKIPIF1<0的公差为d,等差数列SKIPIF1<0的公差为SKIPIF1<0,则SKIPIF1<0,将SKIPIF1<0代入SKIPIF1<0,化简得SKIPIF1<0对于SKIPIF1<0恒成立.则有SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0.选①③作条件证明②:因为SKIPIF1<0,SKIPIF1<0是等差数列,所以公差SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0是等差数列.选②③作条件证明①:[方法一]:定义法设SKIPIF1<0,则SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0SKIPIF1<0;因为SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0满足等差数列的定义,此时SKIPIF1<0为等差数列;当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0不合题意,舍去.综上可知SKIPIF1<0为等差数列.[方法二]【最优解】:求解通项公式因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0也为等差数列,所以公差SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,当SKIPIF1<0时,满足上式,故SKIPIF1<0的通项公式为SKIPIF1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红岩课件教学课件
- 教我作文课件教学课件
- 露天作业课件教学课件
- 2024年度玻璃经销合同
- 2024年工程建设项目材料供应协议
- 2024年度生物医药研发与技术合作合同
- 2024年bulk货物运输协议
- 2024年云服务器租赁及托管合同
- 2024幕墙设计合同
- 2024年度虚拟现实技术研发与许可合同
- 浙江省温州市地图矢量PPT模板(图文)
- 上海市建设工程项目管理机构管理人员情况表
- 北师大版二年级数学上册第九单元《除法》知识点梳理复习ppt
- 空气能室外机保养维护记录表
- DB37∕T 5162-2020 装配式混凝土结构钢筋套筒灌浆连接应用技术规程
- 9-2 《第三方过程评估淋蓄水检查内容》(指引)
- 部编版七年级初一语文上册《狼》公开课课件(定稿)
- 2015路面工程讲义(垫层+底基层+基层+面层+联合层+封层、透层与黏层)
- 《现代汉语修辞》PPT课件(完整版)
- TTJCA 0007-2022 住宅室内装饰装修工程施工验收规范
- 构造柱工程施工技术交底
评论
0/150
提交评论