新人教版(新插图)六年级下册数学全册教案(教学设计)_第1页
新人教版(新插图)六年级下册数学全册教案(教学设计)_第2页
新人教版(新插图)六年级下册数学全册教案(教学设计)_第3页
新人教版(新插图)六年级下册数学全册教案(教学设计)_第4页
新人教版(新插图)六年级下册数学全册教案(教学设计)_第5页
已阅读5页,还剩160页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档精心整理精品文档可编辑的精品文档负数的认识教学导航:【教学内容】负数的初步认识(1)(教材第2页例1和第3页例2)。【教学目标】结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。【重点难点】体会负数的重要性。体会引入负数的必要性,初步理解负数的含义。【教学准备】多媒体课件。教学过程:【情景导入】教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)引出课题并板书:负数的认识【新课讲授】1.教学教材第2页例1。(1)教师板书关键数据:0℃。(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。(4)刚刚同学回答得很对,读法也很正确。(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?学生讨论合作,交流反馈。(6)请同学们把图上其它各地的温度都写出来,并读一读。(7)教师展示学生不同的表示方法。(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。2.教学教材第3页例2。(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-132这样的数表示的是支出的钱数。教师:上述数据中500和-500意义相同吗?(500和-500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?师把学生的表示结果一一板书在黑板上。3.归纳正数和负数。(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像-8,-4,-500,-20这样的数,我们把它叫做负数。(3)那么0应该归为哪一类呢?组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”归纳:0既不是正数也不是负数,它是正数和负数的分界点。(4)你在什么地方见过负数?教师鼓励学生注意联系实际举出更多的例子。【课堂作业】1.完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。答案:-18℃温度低。2.完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:正数有:2.5++41负数有:-7-5.2【课堂小结】通过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。教学板书:第1课时负数的认识0℃-3℃3℃(+3℃)正数:负数:+8-8+4-4+2000-2000+500-500+100-100+20-200既不是正数也不是负数。教学反思:通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。负数的出现,是生活中表示两种相反意义的量的需要,在教学中,教师应通过丰富多彩的生活实例激发学生的学习兴趣。3.学阶段只要求学生初步认识负数,理解负数,在教学中不要求给正负数下定义,只要让学生知道什么是正数什么是负数就可以了。第2课时正、负数的表示教学导航:【教学内容】借助数轴理解正数和负数的意义(教材第5页例3)。【教学目标】1.借助数轴初步理解正数、0、负数。2.初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。【重点难点】认识数轴、0。教学过程:【情景导入】教师用CAI课件演示教材第5页的主题图。教师:如何在一条直线上表示出他们运动后的情况呢?【新课讲授】教学例3。(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?组织学生在小组中议一议,然后汇报。(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。(5)引导学生观察数轴:①从0起往右依次是?从0起往左依次是?你发现什么规律?②在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。【课堂作业】1.完成教材第5页的“做一做”。学生独立练习,指名汇报。2.完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。答案:1.略2.第4题:点A表示的数是-7;点B表示的数是-4;点C表示的数是-1;点D表示的数是3;点E表示的数是6。【课堂小结】通过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。教学板书:第2课时正、负数的表示上面这样的直线叫做数轴。教学反思:本堂课学生的误区在于如何在数轴上找到表示负分数的点,学生很容易混淆像、这样的一些点,教师要加强此内容的指导和练习。

1.折扣教学导航:【教学内容】折扣(教材第8页的内容,练习二第1~3题)。【教学目标】1.明确折扣的含义。2.能熟练地把折扣写成分数、百分数。3.正确解答有关折扣的实际问题。4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。【重点难点】1.会解答有关折扣的实际问题。2.合理、灵活地选择方法,解答有关折扣的实际问题。【教学准备】多媒体课件。教学过程:【情景导入】圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)【新课讲授】1.教学折扣的含义,会把折扣改写成百分数。(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:?④橡皮,原价:1元,现价:?(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。(5)讨论,找规律。A.学生动手操作、计算,并在计算或讨论中发现规律。B.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。(6)归纳,得定义。A.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?B.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成),不便于计算和理解。(7)练习。①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。④九二折是十分之(),改写成百分数是()。2.运用折扣含义解决实际问题。出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?导学生分析题意:打八五折怎么理解?是以谁为单位“1”?找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式:原价×85%=实际售价学生独立根据数量关系式,列式解答。④全班交流。根据学生的汇报,板书:180×85%=153(元)答:买这辆车用了153元。出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”?学生试算,独立列式。③全班交流。根据学生的汇报,板书:第一种算法:原价160元,减去现价,就是比原价便宜多少钱。160-160×90%=160-144=16(元)第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10%=16(元)重点引导学生理解第二种算法,知道现价比原价便宜了10%。3.典例讲析。例在某商店促销活动时,原价800元的某品牌自行车九折出售,最后剩下的几辆车,商家再次打八折出售,最后的几辆车售价多少元?分析:原价800元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。解:800×90%×80%=720×80%=576(元)答:最后的几辆车售价是576元。【课堂作业】1.(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?A.打八折怎么理解?是以谁为单位“1”?B.学生试做,讲评。(2)判断:①商品打折扣都是以原商品价格为单位“1”,即标准量。()②一件上衣现在打八折出售,就是说比原价降低10%。()2.完成教材第8页“做一做”练习题。3.完成教材第13页练习二第1~3题。说明:第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。第2题,要注意指导学生理解9.6元表示的实际含义,它与八折有什么关系。使学生明确9.6元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。答案:1.(1)240-240×80%=48(元)(2)①√②×2.第8页“做一做”:5273.530.83.练习二第1题:(1)1.5×50%=0.75(元)2.4×50%=1.2(元)1×50%=0.5(元)3×50%=1.5(元)(2)(此题答案不唯一)可以买一种面包,也可以两种或两种以上合买。单独买各种打折后的面包:①3÷0.75=4(个)合买各种打折后的面包:②3÷0.5=6(个)eq\o\ac(○,3)3÷1.5=2(个)④3÷1.2=2(个)……0.6(元),再买1个打折后0.5元的面包。⑤可以买3个0.5元的面包,买2个0.75元的面包。可以买1个1.5元的面包,买2个0.75元的面包……第3题:分析:按原价的八折买,优惠价占二折,9.6元占原价的20%,求出原价,用除法计算。解答:9.6÷20%=48(元)【课堂小结】通过这节课的学习你有什么收获?【课后作业】完成练习册中本课时的练习。教学板书:第1课时折扣八五折180×85%=153(元)九折160×(1-90%)=160×10%=16(元)总结:解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。教学反思:1.“打折”这个概念,在日常生活中用到,学生比较熟悉。2.学生对打折的认识还只是停留于感性认识,如打折,学生都知道是便宜了,比原价少了,但是真正能够解释清楚的并不多,对折扣的知识并未真正理解。

2.成数教学导航:【教学内容】成数(教材第9页内容)。【教学目标】1.明确成数的含义。2.能熟练的把成数写成分数、百分数。3.正确解答有关成数的实际问题。【重点难点】1.成数的理解。2.成数的计算。【教学准备】多媒体课件。教学过程:【情景导入】农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导)【新课讲授】1.介绍成数的含义,会把成数改写成分数,百分数。(成数:表示一个数是另一个数的十分之几,通称“几成”)(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?(学生讨论并回答)教师板书:成数分数百分数二成十分之二20%(2)试说说以下成数表示什么?①出口汽车总量比去年增加三成。这里的“三成”表示什么?②北京出游人数比去年增加两成。这里的两成表示什么?引导学生讨论并回答。2.运用成数的含义解决实际问题。(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?(2)分析题目,理解题意:①今年比去年节电二成五怎么理解?是以哪个量为单位“1”?②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式:今年的用电量=去年的用电量×(1-25%)③学生独立根据关系式,列式解答。④全班交流。方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)【课堂作业】完成教材第9页“做一做”。答案:15000÷(1+20%)=15000÷1.2=12500(人)【课堂小结】这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解?【课后作业】完成练习册中本课时的练习。教学板书:第2课时成数教学反思:“成数”已经广泛应用于表示各行各业的发展变化情况。教学本课时要多联系实际讲解,列关系式时要多强调哪个量是单位“1”,加强学生的逻辑训练。

第3课时税率教学内容:税率(课本第10页例3)教学目标:1.理解纳税的含义和纳税的重大意义。2.能计算一些有关纳税的问题。3.培养学生的依法纳税意识。教学重点:能进行一些有关纳税问题的计算。教学过程|:一、学生汇报自学情况,介绍有关纳税的知识

纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防等事业,以便不断提高人民的物质和文化水平,保卫国家安全。因此,根据国家规定应该纳税的集体或个人都有依法纳税的义务。

1993年我国进行了税制改革,将纳税主要分为增值税、消费税、营业税和个人所得税等几类。缴纳的税款叫应纳税额。根据纳税种类的不同,应纳税额的计算方法也有说不同。应纳税额与各种收入(如销售额、营业额、应纳税所得额等)的比率叫做税率。

探索计算纳税的方法

教学例3

1.出示例3、一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

结合例3,进一步让学生理解什么是营业额、什么是税率、什么是营业税、什么是应纳税额。

在弄清以上这些相关概念之后,学生尝试解答例3。2.在学生独立审题解答的基础上订正。30×5%=1.5(万元)新|课|标|第|一|网堂上练习及作业第10页做一做第14页第6、7、8题四、课堂小结:税率的意义及计算方法板书设计:教学反思:

第4课时利率教学内容:利率(课本第11页例4)教学目标:1.学生在调查实践中了解储蓄的意义、种类,理解什么是本金、利息。2.能正确计算利息。教学重点:利息的计算。

教学难点:利息的计算。教学过程:创设生活情境,了解储蓄的意义和种类1、储蓄的意义师:快要到年底了,许多同学的爸爸妈妈的单位里会在年底的时候给员工发放奖金,你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?

2、储蓄的种类。(学生汇报课前调查)二、自学课本,理解本金”、“利息”、“利率”的含义1、自学课本中的例子,理解“本金”、“利息”、“利率”的含义,然后四人小组互相举例,检查对“本金”、“利息”、“利率”的理解。本金:存入银行的钱叫做本金。利息:取款时银行多付的钱叫做利息。利率:;利息与本金的百分比叫做利率。2、师:根据国家经济的发展变化,银行存款的利率先让学生谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。.3、利息计算(1)利息计算公式

利息=本金×利率×时间

(2)例4:王奶奶要存5000元请你帮助王奶奶算一算存两年后可以取回多少钱?(整存整取两年的利率是2.10%)。在弄清以上这些相关概念之后,学生尝试解答例题。在学生独立审题解答的基础上订正。方法一方法二5000×2.10%×2=210(元)5000×(1+2.10%×2)5000+210=5210(元)=5000×1.042=5210(元)三、实践应用第11页做一做完成练习时看清题目认真审题,注意计算要准确。四、课堂总结

学生谈谈学习本课有什么新的收获。五、布置作业:第14页的第9题板书设计:教学反思:xkb1.com

第5课时一些特殊的购物问题的解决教学内容:学会购物(课本第12页例5)教学目标:1.结合具体事例,经历综合运用所学知识解决合理购物问题的过程。2.了解合理购物的意义,能自己做出购物方案,并对方案的合理性做出充分的解释。教学重点:运用百分数相关的知识解决问题。教学过程:创设生活情境,引入新课让学生说说生活中商家为了吸引顾客或扩大销量,常常搞一些什么样的促销活动?那如何学会合理购物呢,从而引入本节新课。探究体验,经历过程1.出示第12页的例52.让学生仔细读题,说说想到了什么?着重理解满100元减50元的意思新-课-标-第-一-网3.分别计算出在A商场和B商场所花的实际费用,进行比较:A商场:230×50%=115(元)B商场:230-50×2=130(元)4.从而得出在A商场购物更省钱,所以在购物时我们要根据促销方法的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这就是“合理购物”。三、课堂练习:第12页做一做四、课堂小结如何才能进行合理购物五、作业:第15页第13、14题板书设计:教学反思:

圆柱的认识(1)一、教学目标(一)知识与技能使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。(二)过程与方法1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。(三)情感态度和价值观进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。二、教学重难点教学重点:掌握圆柱的基本特征。教学难点:高的认识。三、教学准备教师:课件,长方体模型,圆柱模型,卡纸做的长方形(长10cm,宽5cm),小棒(可用筷子代替),备用剪刀若干。学生:每生自带一个圆柱形物体,草稿纸。四、教学过程(一)复习旧知,引出课题1.课件出示长方体、正方体:这是我们已经研究过的立体图形,谁还记得长方体和正方体有哪些特征?我们是怎样研究的?教师:(出示长方体的模型),我们在认识长方体时主要认识了它的哪些方面?是怎样研究的?学生1:长方体的组成,就是长方体有6个面,12条棱和8个顶点。观察:数一数。(根据学生回答板书研究方法)学生2:相对的面的面积相等,相对的棱的长度相等。动手操作:画、剪、比、量。教师:我们在认识一种几何图形时,可以用这些方式研究一种新的立体图形。【设计意图】用长方体、正方体的学习方法来研究圆柱体,体现了研究方法的一致性,有利于学生学习能力的提高,为接下来的小组合作学习提供方法上的指引。2.在我们的生活中,还有很多物体的形状设计不是长方体和正方体的,你们看(课件出示):这些物体的形状有什么共同的特点?如果把这些物体的形状画下来会是什么样子的呢?课件演示:从实物图抽象出圆柱图形。3.小结:上面这些物体的形状都是圆柱体。揭题:今天我们要一起来研究圆柱。(板书课题)(二)动手操作,探究圆柱的特征1.小组合作:探究圆柱各部分的组成和特征。教师:那么圆柱究竟是怎么样的呢?(课件出示合作要求)(1)请你拿出你所带的圆柱形物体,看一看它是由哪几部分组成的,小组合作研究各部分有什么特征,如果需要用到特别的工具,比如剪刀,可向老师借用。(2)有困难的小组可以到书中去寻找或补充答案。仔细阅读教材18页例1的内容,注意边读书中内容,边用笔画一画。(3)小组内互相交流:组织整理好汇报的内容(如:有什么发现?是用什么方法来研究的?)【设计意图】小组合作学习,明确要求有利于学生有序地开展研究活动,在互相合作、互相补充中培养小组协作精神。

2.小组汇报:(1)结合实物,初步探索圆柱的组成。哪一组同学来给大家说说看,圆柱有哪些特征?你们是怎么验证的?(学生汇报,教师相机质疑)学生:我们知道了圆柱有3个面组成。上下两个圆叫做底面,圆柱周围的面叫做侧面。(课件出示圆柱和相应的名称)教师:指一指手中圆柱的底面、侧面。(板书:2个底面,1个侧面)圆柱的这些面有什么特征呢?(2)观察、比较圆柱底面的特征。学生:圆柱的两个底面都是圆,大小相等。(板书:面积相等)教师:你是怎样知道两个底面相等的?预设:剪出来比较、量直径计算、画在纸上倒过来观察是否重合。(分别请学生演示验证)用哪种方法验证最简单?(3)感知圆柱侧面的特征。教师:圆柱周围的面有什么特征?与底面有什么不同?(板书:曲面)再用手摸一摸。【设计意图】动手操作有利于增强学生直观感知,让学生更好地理解圆柱的特征,通过多种方法的展示验证拓宽学生思维。(4)圆柱的高。课件显示:一个圆柱高度变化过程。请同学观察:圆柱的什么发生了变化?引导:哪段距离表示圆柱的高?请看屏幕,圆柱两个底面之间的距离,就叫圆柱的高。(课件出示:圆柱两个底面之间的距离叫做高)教师:圆柱的高在哪些地方可以找到?根据学生的回答,课件上显示并用有颜色的线闪烁。小结并板书:圆柱的高有无数条,高的长度都相等。教师:你能在你的圆柱上指出这条高吗?(圆柱中心的高,指不到)面对无数条的高,测量哪一条最为简便?(为了方便一般测量侧面上的高)教师:请看这样画一条线段是它的高吗?(三角板斜放)预设:高是两个底面之间的距离,应该垂直于两个底面。在我们的生活中,圆柱的高还有其他的说法。(课件演示)你看:一口水井是圆柱形的,这个圆柱的高还可以说是“深”,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚”,水管也是圆柱形的,它的高还可以叫“长”。【设计意图】把抽象的立体图形还原于生活原形,更好帮助学生建立数学与生活的联系,为以后解决生活中的实际问题作好铺垫。(5)小结圆柱特征。教师:现在谁来完整的说说圆柱有什么特征(看板书)?(三)练习巩固1.教材P18做一做第1题。根据学生回答,课件出示相应名称。2.教材P20练习三第1题:学生独立完成,全班校对答案,不是圆柱的说说理由。【设计意图】通过练习,帮助学生进一步明确圆柱各部分的名称和特征,巩固所学的知识

(四)游戏拓展,感受平面图形与立体图形的转换1.出示一个硬纸板做成的长方形(长10cm,宽5cm),用长尾夹将其10cm的长固定在小木棒上。教师:这个简易的玩具跟我们今天所学的圆柱有什么关系呢?我们可以快速地转动木棒,看看会发生什么奇迹?学生:转动起来是一个圆柱。教师:是怎样的一个圆柱?你能用具体数据来描述一下吗?(底面半径为5cm,高为10cm的一个圆柱)2.如果我把这个长方形5cm长的那一边夹住后再转,转出来的圆柱跟刚才的一样吗?想象一下:这又是一个怎样的圆柱?(一边说一边用手势表示)出现的圆柱和你想象的大小一样吗?和我们生活中常见的什么物体大小差不多?3.同一个长方形,为什么转出来的圆柱不同?如果有一个长方形长是150厘米,宽是30厘米,快速旋转,会形成一个多大的圆柱?学生回答,课件出示:油桶。4.考考你:教材P18做一做第2题。【设计意图】使学生从旋转的角度认识圆柱,即长方形的一条边快速旋转,形成圆柱形状,感受平面图形与立体图形的转换。通过想象、用手势比划大小、联系实际生活中的物品,最后看圆柱辨长方形,层层递进,发展学生的空间观念。(五)课堂总结这节课你有什么新的收获和感想?

圆柱的表面积(1)一、教学导航【教学内容】圆柱的表面积(1)(教材第21页例3)。【教学目标】1.理解圆柱的表面积的意义。2.探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。【重点难点】1.掌握圆柱的侧面积和表面积的计算方法。2.理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。【教学准备】多媒体课件和圆柱体模型。二、教学过程【复习导入】1.复习引入。指名学生说出圆柱的特征。2.口头回答下面的问题。(1)一个圆形花池,直径是5m,周长是多少?(2)长方形的面积怎样计算?板书:长方形的面积=长×宽。【新课讲授】1.教师出示圆柱形实物,师生共同研究圆柱的侧面积。师:圆柱的侧面展开是一个什么图形?生:长方形。师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。2.教学例3。(1)圆柱的表面积的含义。教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。(2)计算圆柱的表面积。①师:圆柱的表面展开后是什么样的?组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。(3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。答案:628cm2【课堂作业】完成教材第23页练习四的第2~6题。第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。第5题,对于有困难或争议大的,可用实物或模型直观演示。第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。答案:第2题:3.14×1.2×2=7.536(m2)第3题:3.14×1.5×2.5=11.775(m2)第4题:3.14×3×2+3.14×(3÷2)2=25.905(m2)第6题:长方体:800cm2正方体:216dm2圆柱:533.8cm2【课堂小结】通过这节课的学习,你有哪些收获?【课后作业】完成练习册中本课时的练习。三、教学板书第3课时圆柱的表面积(1)四、教学反思1.此课习题的容量较大,教师应做到讲练结合,调节学生的学习兴趣。2.圆柱的表面积的计算步骤较多,教师应注意引导学生先看清题意,再分析到底应求几个面的面积;后进生最好用分步列式,每一步要求说出求的是哪一部分的面积。

圆柱的表面积(2)一、教学导航【教学内容】圆柱的表面积(2)(教材第22页例4)【教学目标】能灵活运用求圆柱侧面积、表面积的相关知识,解决生活中的实际问题。【重点难点】运用圆柱的表面积公式解决问题。【教学准备】多媒体课件和圆柱体模型。二、教学过程【复习导入】前面我们已经学习了圆柱的表面积计算公式,有同学能说一说么?指名学生回答。板书:圆柱的表面积=圆柱的侧面积+两个底面面积圆柱的侧面积=圆柱的底面周长×高【新课讲授】教学例4。(1)出示例4。学生读题,明确已知条件:已知圆柱的高和底面直径,求表面积。(2)求厨师帽所用的材料,需要注意:厨师帽没有下底面,说明它只有一个底面。(3)指定两名学生板演,其他学生独立进行计算。教师巡视,注意看学生所算最后的得数是否正确。指导学生做完后集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整十平方厘米,省略的个位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。(4)巩固练习。①教材第22页“做一做”第1题。组织学生独立完成。②教材第22页第2题。请三名学生板演,其余同学做在草稿本上。答案:①第22页“做一做”第1题:1.12m2,100.48dm2②第22页“做一做”第2题:376.8cm2【课堂作业】完成教材第23~24页练习四的第7~12题。第7、8题,学生独立作业,老师巡视,个别不会的加以指导。第9题,提醒学生注意是上下底面分别留出了78.5cm2的口,应减去的部分是78.5×2=157(cm2)。第10题,先让学生明确计算步骤,再分步列出算式,最后计算水桶的用料。第11题,教师应先用教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体的表面积与圆柱的侧面积之和减去圆柱的一个底面积。提醒学生注意根据要求将计算结果化成以平方米为单位的数,并根据实际情况保留近似数。第12题,是已知圆柱的侧面积和底面半径,求圆柱的高,部分学生有困难。教师辅导时可以提示学生列方程解答。答案:第8题:花布:3.14×18×80=4521.6(cm2)黄布:3.14×(18÷2)2×2=508.68(cm2)第9题:3.14×20×30+3.14×(20÷2)2×2-78.5×2=2355(cm2)第10题:3.14×(12×)×12+3.14×(12×÷2)2=402.705(dm2)第11题:(1)12×12×2+16×12×4+3.14×12×55-3.14×(12÷2)2=3015.36cm2≈0.31(m2)(2)50×0.31×30=465(元)第12题:188.4÷(2×3.14×2)=15(dm)【课堂小结】通过这节课的学习,你有哪些收获?【课后作业】完成练习册中本课时的练习。三、教学板书第4课时圆柱的表面积(2)圆柱的表面积=圆柱的侧面积+两个底面面积实际用料>计算用料“进一法”→近似数四、教学反思教师应注意培养学生良好的做题习惯,从列式到计算到结果以及注意单位等,要求学生要细心,特别是知道直径时,学生爱出错,会用直径直接平方,还有的学生平方也爱算错,总是弄成乘以2了。

圆柱的体积(1)一、教学导航【教学内容】圆柱的体积(教材第25页例5)。【教学目标】探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。【重点难点】1.掌握圆柱的体积公式,并能运用其解决简单实际问题。2.理解圆柱体积公式的推导过程。【教学准备】推导圆柱体积公式的圆柱教具一套。二、教学过程【复习导入】1.口头回答。(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。2.引入新课。我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。【新课讲授】1.教学圆柱体积公式的推导。(1)教师演示。把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。(2)学生利用学具操作。(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。(6)推导圆柱的体积公式。①学生分组讨论:圆柱的体积怎样计算?②学生汇报讨论结果,并说明理由。教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。教师板书:【课堂作业】教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。答案:“做一做”:1.6750(cm3)2.7.85m3第1题:(从左往右)3.14×52×2=157(cm3)3.14×(4÷2)2×12=150.72(cm3)3.14×(8÷2)2×8=401.92(cm3)【课堂小结】通过这节课的学习,你有什么收获?你有什么感受?【课后作业】完成练习册中本课时的练习。三、教学板书第4课时圆柱的体积(1)四、教学反思1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控

圆柱的体积(1)一、教学导航【教学内容】圆柱的体积(1)【教学目标】能运用圆柱的体积计算公式解决简单的实际问题。【重点难点】容积计算和体积计算的异同,体积计算公式的灵活运用。【教学准备】教具。二、教学过程【复习导入】口头回答。教师:前面我们已经学习了圆柱体积的计算公式,有同学能说一说么?指名学生回答。板书:圆柱的体积=底面积×高V=Sh=πr2h【新课讲授】1.教学例6。(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?学生:应先知道杯子的容积。(2)学生尝试完成例6。①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)②杯子的容积:50.24×10=502.4(cm3)=502.4(mL)(3)比较一下补充例题和例6有哪些相同的地方和不同的地方?学生:相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。2.教学补充例题。(1)出示补充例题:教材第26页“做一做”第1题。(2)指名学生回答下面问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算结果是什么?学生:计算时既要分析已知条件和问题,还要注意统一结果单位,方便比较。(3)教师评讲本题。【课堂作业】教材第26页“做一做”第2题,第28页练习五第3、4题。第3题,其中的0.8m为多余条件,要注意指导学生审题,选择相关的条件解决问题。第4题,是已知圆柱的体积和底面积,求圆柱的高,可以让学生列方程解答。答案:“做一做”:2.3.14×(0.4÷2)2×5÷0.02=31.4≈31(张)第3题:3.14×(3÷2)2×0.5×2=7.065(m3)=7.065(立方米)第4题:80÷16=5(cm)【课堂小结】通过这节课的学习,你有什么收获和感受?【课后作业】完成练习册中本课时的练习。三、教学板书第6课时圆柱的体积(2)圆柱的体积=底面积×高V=Sh=πr2h四、教学反思本课时主要在讲解例题,教师应注意培养学生良好的做题习惯,先分析题意,弄清楚求什么,再列式。

圆柱的体积(3)一、教学导航【教学内容】圆柱的体积(2)。(教材第27页内容)【教学目标】利用圆柱的相关知识解决问题。【重点难点】求不规则圆柱体的体积。【教学准备】多媒体课件、矿泉水瓶。前面我们已经学习了圆柱的体积求法,今天我们来学习它的更多应用。二、教学过程【情景导入】我们之前在推导圆柱的体积公式时,是把它转化成近似的长方体,找到这个长方体与圆柱各部分的联系,由长方体的体积公式推导出了圆柱的体积公式。那么不规则圆柱的体积要怎么求呢?今天老师带来了一个矿泉水瓶,它的标签没有了,要怎么通过计算得出它的容积呢?【新课讲授】1.教学例7。2.学生读题,明确已知条件及问题。学生:这个瓶子不是一个完整的圆柱,无法直接计算容积。教师:所以,我们要看看,能不能将这个瓶子转化成圆柱呢?3.拿出水瓶,装上一部分水,按照例题中的方法做出讲解。引导学生思考。解题思路:(1)瓶子里水的体积倒置后没变,水的体积加上18cm高圆柱的体积就是瓶子的容积。(2)也就是把瓶子的容积转化成了两个圆柱的容积。【课堂作业】完成教材第27页“做一做”。这类题的解题关键是明确瓶子正放和倒放时空余部分的容积是相等的。答案:3.14×(6÷2)2×10=282.6(cm3)=282.6mL。【课堂小结】通过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。三、教学板书第5课时圆柱的体积(2)1.转化成圆柱。2.瓶子容积=圆柱1+圆柱2。四、教学反思本课我们利用了体积不变的特性,把不规则图形转化成规则图形来计算,讲授时也可以联系其它的转化法来讲解。

圆锥的认识一、教学导航【教学内容】圆锥的认识。(教材第31~32页例1及教材第35页练习六的第1、2题)。【教学目标】1.认识圆锥,掌握它的各部分名称及特征。2.认识圆锥的高,掌握测量圆锥的高的方法。3.通过观察圆锥建立空间观念,培养学生的观察能力,以及从实物抽象到几何的能力。【重点难点】认识圆锥的高及高的测量方法。【教学准备】圆柱纸筒,布,圆锥形的实物,圆锥模型,木板,多媒体课件,米(或沙子),三角板,长方形,半圆形硬纸片。二、教学过程【情景导入】“魔术”导入,引出课题。1.出示一个圆柱,用这个圆柱外壳套住一个圆锥。教师:这是一个圆柱,谁能说说它有什么特征?学生回答。2.教师:现在老师用一块布把这个圆柱遮住(边说边演示)。如果这个圆柱的上底面慢慢的缩到圆心时,那么圆柱将变成怎样的呢?你能试着描述一下吗?学生回答。3.教师:现在看一看,老师能不能把这个圆柱变成你们说的那样。教师喊一、二、三,揭开遮在圆柱上面的布,露出一个圆锥。教师:像你们说的一样吗?学生回答。4.教师:看到这个课题,你想知道什么呢?【新课讲授】1.初步感知。电脑出示圆锥实物图。教师:观察上面这些物体的形状有什么共同点?教师利用课件动画光点的闪烁,闪动实物图的轮廓,移走实物的模样,剩下图形的轮廓,抽象出圆锥的几何图形。教师:这样的图形叫圆锥。在我们生活的周围,你们知道哪些物体是圆锥形的?2.认识圆锥及各部分的名称。(1)引导学生认真对照图形和模型观察。请一名学生上台指出哪是圆锥的底面,哪是圆锥的侧面。师:我们已经知道了圆锥的底面和侧面,大家围绕下面几个问题同桌之间共同探讨。①圆锥有几个底面?是什么形状的?②用手摸一摸圆锥的侧面,你发现了什么?③用手摸一摸圆锥的顶点,你有什么感觉?组织学生先独立思考,再在小组中相互交流,然后汇报。教师根据学生的汇报结果小结:圆锥有一个底面,是圆形的,有一个侧面,它是一个曲面,有一个顶点。(2)怎样画圆锥的平面图呢?示范:先画一个等腰三角形,它的底边是虚线,然后画出它的底面,底面要画成椭圆的,最后标出顶点、底面、圆心、底面半径r。(师在黑板上画出来)学生试着在自己的练习本上画。(3)认识圆锥的高。师:圆锥的高在哪里?圆锥的高有几条?先让学生小组讨论交流汇报,然后全班讨论。教师:圆锥的高就是指从圆锥的顶点到底面圆心的距离。(师在黑板上画出来)那么它有几条高一看就知道了。(1条)(4)测量圆锥的高。教师:由于圆锥的高在圆锥的里面,我们不能直接测量它的长度,怎样测量圆锥的高呢?组织学生小组合作,交流汇报。课件演示测量过程,教师叙述:①把圆锥的底面放平;②用一块木板水平的放在圆锥的顶点上面;③竖直地量出平板和底面之间的距离。同桌相互配合,动手测量手中圆锥的高。教师:谁来展示一下你的方法,有其它的方法吗?教师:如果是圆锥形的沙堆和粮堆,又怎样测量它的高呢?(学生合作实验,并相互交流)(5)大家喜欢制作玩具吗?下面我们一起制作一个玩具,好吗?拿出你准备的三角形、长方形硬纸片,快速转动,看一看它们是什么形状?(学生操作演示,小组内互相演示)【课堂作业】1.完成教材第32页的“做一做”。2.完成教材第35页练习六第1、2题。答案:1.做一做:提示:亲自动手测量出圆锥的底面直径和高。2.第1题:蒙古包由圆柱和圆锥组成;墨水瓶由2个长方体和1个圆柱组成;建筑物由圆柱、圆锥、长方体组成。【课堂小结】通过这节课的学习,你有哪些收获?让学生畅所欲言后,教师再加以小结。【课后作业】完成练习册中本课时的练习。三、教学板书第6课时圆锥的认识圆锥的底面是个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离是圆锥的高。四、教学反思1.学生有了圆柱的知识与技能基础,认识圆锥不成问题。2.在动手合作中进行学习,这是学生非常喜欢的学习方式。3.学生的想象力已经初步形成,这对于学生认识图形很有帮助。

圆锥的体积(1)教学导航:【教学内容】圆锥的体积(1)(教材第33页例2)。【教学目标】1.参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。2.培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。【重点难点】圆锥体积公式的推导过程。【教学准备】同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。教学过程:【情景导入】1.复习旧知,作出铺垫。(1)教师用电脑出示一个透明的圆锥。教师:同学们仔细观察,圆锥有哪些主要特征呢?(2)复习高的概念。A.什么叫做圆锥的高?B.请一名同学上来指出用橡皮泥制作的圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)2.创设情境,引发猜想。(1)电脑呈现出动画情境(伴图配音)。夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)(2)引导学生围绕问题展开讨论。问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。【新课讲授】自主探究,操作实验下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?(1)小组实验。A.学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)B.同组的学生做完实验后,进行交流,并把实验结果写在黑板上。(2)全班交流。①组织收集信息。学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:A.圆柱的体积正好等于圆锥体积的3倍。B.圆柱的体积不是圆锥体积的3倍。C.圆柱的体积正好等于圆锥体积的8倍。D.圆柱的体积正好等于圆锥体积的5倍。E.圆柱的体积是等底等高圆锥体积的3倍。F.圆锥的体积是等底等高圆柱体积的。②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。(3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?(4)推导公式。尝试运用信息推导圆锥的体积公式。这里的Sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?(5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)【课堂作业】完成教材第34页“做一做”第1题。先组织学生在练习本上算一算,然后指名汇报。答案:13×19×12=76(cm3)【课堂小结】教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。【课后作业】1.完成练习册中本课时的练习。2.教材第35页第3、4、5题。答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3Sh计算出该物体的体积。第4题:(1)25.12(2)423.9第5题:(1)×(2)√(3)×教学板书:第2课时圆锥的体积(1)教学反思:在操作与实践的过程中,教师要让一些学习困难的学生参与其中,使他们感受到学习的快乐,并懂得可以通过玩让他们掌握知识。本课让学生都经历“猜想估计——设计实验验证——发现算法”的自主探究学习的过程。在教师适当的引导下,学生根据自己的设想自主探究等底等高的圆锥体和圆柱体体积之间的关系、圆锥体体积的计算方法,每个学生都经历一次探究学习的过程。在实际教学中,课堂出现了验证等底等高的圆锥和圆柱体积关系的方法,出现了对圆锥体积计算公式中的的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的验证方式是不一样的。这也证明了学生是有着各自不同思维方式的。

圆锥的体积(2)教学导航:【教学内容】圆锥的体积(教材第34页例3)。【教学目标】进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。【重点难点】圆锥体积公式的实际应用。【教学准备】多媒体课件。教学过程:【情景导入】前面的课程中我们一起经历了圆锥体积公式的推导过程。有同学能说一说么?指名学生回答。板书:V圆锥=V圆柱=Sh【新课讲授】1.教学例3。(1)组织学生阅读题目,理解题意。(2)组织学生独立思考,尝试解答。(3)组织学生交流反馈,结合学生发言,教师板书:沙堆底面积:3.14×(4÷2)2=3.14×4=12.56(m2)沙堆的体积:1/3×12.56×1.5=6.28(m3)答:这堆沙子的体积是6.28m3。2.教学补充例题。例:在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4m,高是1.5m,每立方米小麦约重735kg,这堆小麦大约有多少千克?教师先引导学生读题,弄清题意。组织学生在小组中合作完成,并在全班交流。答案:13×3.14×()2×1.5×735=4615.8(kg)【课堂作业】完成教材第34页“做一做”第2题。先组织同学们在练习本上演算,教师集体订正。答案:3.14×(4÷2)2×5××7.8=163.28≈163g【课堂小结】通过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。教学板书:第3课时圆锥的体积(2)沙堆底面积:3.14×(4÷2)2=3.14×4=12.56(m2)沙堆的体积:1/3×12.56×1.5=6.28(m3)答:这堆沙子的体积是6.28m3。教学反思:让学生体验数学知识广泛的应用性,感受发现知识的快乐,激发学习兴趣,感受数学与生活的联系,培养学数学、用数学的乐趣。

用比例解决问题(1)教学导航:【教学内容】用比例解决问题(1)(教材第61页的例5)。【教学目标】使学生能正确判断应用题中涉及的量成什么比例关系,能利用正比例的意义正确解读实际问题。【重点难点】1.认识正比例实际问题的特点。2.掌握用比例知识解答实际问题的解题思路。【教学准备】投影仪。教学过程:【复习导入】1.(1)判断下面的量各成什么比例。①工作效率一定,工作总量和工作时间。②路程一定,行驶的速度和时间。先让学生说出数量关系式,再判断。(2)先根据条件说出下面各题的数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。①一台机床5小时加工40个零件,照这样计算,8小时加工64个。②一列火车行驶360km。每小时行90km,要行4小时;每小时行80km,要行x小时。指名口答,教师板书。2.引入新课。从上面可以看出,生产、生活中的一些实际问题,应用比例的知识也可以列一个等式。所以我们以前学过的一些实际问题,还可以应用比例的知识来解答。这节课,我们就来学习用正比例知识解决问题。(板书课题)【新课讲授】1.教学例5。教师出示教材第61页的情境图,引导学生观察。组织学生描述图画上的内容和数学信息。问题:张大妈家上个月用了8吨水,水费是28元。李奶奶家用了10吨水,水费是多少钱?(1)想一想:怎样计算呢?引导学生寻找条件,独立思考,列式算一算,再在小组中交流。(2)指名说一说计算方法。学生可能会这样计算:28÷8×10=3.5×10=35(元)(3)还有其他的解答方法吗?引导学生思考,教师可以说明:这样的问题可以应用比例的知识来解答。(4)教师:问题中有哪两种量,它们成什么比例关系?你是根据什么判断的?根据这样的比例关系,你能列出等式吗?组织学生先独立思考,然后小组内讨论、交流。(5)指名汇报。说一说解答方法。汇报时学生可能会说出:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说两家水费和用水的吨数的比值是相等的。(6)组织学生设未知数,根据正比例的意义列方程解答。指名板演,集体订正。(7)指名检验。师说明:在列式时,同学们可能感到很陌生,列正比例的式子是什么样的,就是列出两组比,并且比值要相等和题中的意义要相符,比如,此题比值的意义是每吨水的价钱一定,那么你所列的比的比值一定要表示每吨水的价钱。应列出:解:设李奶奶家上个月的水费是x元。28∶8=x∶108x=28×10x=280÷8x=35答:李奶奶家上个月的水费是35元。(8)将答案代入到比例式中进行检验。2.修改题目:王大爷上个月的水费是42元,他们家上个月用了多少吨水?让学生说一说题意。请同学们按照例5的方法在练习本上解答,同时指一名板演,然后集体订正。指名说一说是怎样想的,列比例的根据是什么?学生独立应用比例的知识来解答,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。【课堂作业】教材第62页“做一做”第1题。(1)先组织学生读题,理解题意。(2)指两名学生板演,集体订正。答案:第1题:解:设要用x元。6∶4=x∶3x=4.5【课堂小结】通过这节课的学习,你有哪些收获?【课后作业】教材第63页练习十一第3、4题。教学板书:用比例解决问题(1)用比例知识解题的一般步骤:(1)判断比例关系(2)找出对应数值(3)列出等式解答教学反思:1.通过本节课的学习让学生进一步的判断正比例的量,从而加深对正比例的理解。有利于沟通知识间的联系,也为以后的中学理科中应用比例知识解决一些问题做好准备。2.由于解答时是根据比例的意义列等式的,学生可以巩固和加深对简易方程的认识。在教学上要十分重视从旧知识引出新知识,因为在这个过程中,蕴含抽象概括的方法。

用比例解决问题(2)教学导航:【教学内容】教材第62页例6。【教学目标】1.能利用反比例的意义正确解读实际问题。2.进一步培养学生应用已学知识进行分析、推理的能力。在解决实际问题的过程中,开拓思维。【重点难点】掌握用反比例知识解答实际问题的解题思路。【教学准备】多媒体课件。教学过程:【情景导入】前面我们一起学习了用正比例解决实际问题,今天我们一起来学习用反比例解决实际问题。【新课讲授】1.教学例6。一个办公室原来平均每天照明用电100千瓦时。改用节能灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?提问:以前我们是怎样解答的?这样解答是先求什么?是按怎样的数量关系式来求的?这道题里哪个量是不变的量?(1)仿照例5的解题过程,用比例的知识来解答例6。指名板演,其余学生在练习本上做。练习后让学生说一说怎样想的。检查解答过程,结合提问弄清为什么要列成积相等的式子。(2)按过去的方法是先求什么再解答的?求总数量的题现在用什么比例关系解答?用反比例关系解答这道题,应该怎样想,怎样做?(3)指出:解答例6要按题意列出关系式,判断反比例,再找出两种相关联的量相对应的数值,然后根据反比例关系的乘积一定,也就是相对应数值的乘积相等,列式解答。2.小结解题思路。(1)请同学们根据例6的解题过程,想一想应用比例知识解题,是怎样想的,怎样做的?(2)同学们相互讨论一下,然后大家交流。(3)指一名学生说解题思路。(4)指出:应用比例的知识解题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联的量的对应数值,(板书:找出对应数值)再根据正反比例意义列出等式解答。(板书:列出等式解答)追问:你认为解题的关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例等式比值相等,反比例乘积相等)【课堂作业】教材第62页“做一做”第2题。(1)先组织学生读题,理解题意。(2)指两名学生板演,集体订正。答案:第2题:解:设可以买x支。2x=1.5×4x=3【课堂小结】通过这节课的学习,你有哪些收获?【课后作业】完成练习册中本课时的练习。教学板书:用比例解决问题(2)用比例知识解题的关键:正确判断成什么比例,正比例等式比值相等,反比例乘积相等。教学反思:学生一般不喜欢用比例方法,而喜欢用算术方法解决问题。把学生从传统的算术方法中释放出来是教学的关键。因为习惯很难改变,一种新的思维方式需要时间来接受,所以对于用比例来解决问题必须在以后的课堂上经常提到。改变他们传统的思维习惯,也是为了和初中学习的新知识接轨。

比例的意义教学导航:【教学内容】比例的意义(教材第40页的内容)。【教学目标】1.理解比例的意义,会根据比例的意义组成比例。2.培养学生的分析概括能力,经历引导学生参与知识的形成过程,发现过程和运用过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系。3.感受生活中处处有数学,激发学习的兴趣,体会事物间的相对联系,培养探究精神。【重点难点】1.认识比例,理解比例的意义。2.在已有知识的基础上,结合实例引出新的知识。【教学准备】情境图、投影仪、多媒体课件。【复习导入】1.教师:请同学们回忆一下上学期我们学过的比的知识,谁能说一说什么叫做比?举例说明什么叫做比的前项、后项、比值。教师把学生举的例子板书出来,并注明各部分的名称。2.求下面各比的比值。学生独立求出各比的比值。(1)教师:在求比值的时候你们发现了什么吗?学生:有两个比的比值相等。教师:哪两个比的比值相等呢?学生回答后,教师把这两个比画上横线。师:是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连接起来,写成一种新的式子,如:4.5∶2.7=10∶6。课件显示:“10∶6”和“4.5∶2.7”同时闪烁,接着两个比下面的比值隐去,再用等号连接起来。(2)前面的两个比能用等号连接起来吗?为什么?教师将课件后面的两个比隐去。学生:不能,比值不相等。教师小结:数学中规定,像这样的一些式子就叫做比例。教师板书:比例。【新课讲授】1.师:今天这节课我们就来一起研究比例,你想研究哪些内容呢?生:比的意义,学比例有什么用?比例有什么特点?师:那好,我们就来研究比例的意义吧,到底什么是比例呢?根据下面的问题自学例1。①找出每面红旗长与宽的比。②求出每个比的比值。③哪几个比的比值相等?2.学生自学完以后,教师逐个问题指名学生回答,并板书在黑板上:2.4∶1.6=;60∶40=。两面国旗的长和宽的比值相等。板书:2.4∶1.6=60∶40,也可以写成。师:像这样的式子就叫做比例。观察这些式子,你能说出什么叫做比例吗?根据学生的回答,教师抓住关键点板书:两个比比值相等教师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。教师用课件显示:表示两个比相等的式子叫做比例。学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。3.找比例。师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?过程要求:学生猜想另外两面国旗长、宽的比值。求出国旗长、宽的比值,并组成比例。【课堂作业】1.完成教材第40页“做一做”第1题。学生独立完成,再在小组中相互交流、订正。2.完成教材第40页“做一做”第2题。组织学生议一议,加深对比例意义的理解。【课堂小结】通过这节课的学习,你知道“比”和“比例”这两个概念的联系与区别吗?学生各抒己见,之后师生共同归纳。【课后作业】教材第43页练习八第1、2题。教学板书:比例的意义教学反思:1.让学生自己观察比较,总结得出比例的意义,并从正反两方面进一步认识比例的概念,教学更好地发挥了引导的作用。2.引导学生探究比例的特点时,通过观察比较,小组交流,多方验证,学生的思维从先前的不知所向变成了最后的豁然明朗。

比例的基本性质教学导航:【教学内容】比例的基本性质(教材第41页内容)。【教学目标】1.使学生理解比例的基本性质。2.提高学生观察、计算、发现、验证和总结的能力。3.在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。【重点难点】应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。【教学准备】投影仪。教学过程:【复习导入】1.教师提问:什么叫做比例?2.应用比例的意义,判断哪两个比可以组成比例。6∶3和8∶50.2∶2.5和4∶50教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?【新课讲授】1.教学比例各部分的名称。引导学生自学教材第41页第1行、第2行的内容。教师板书:2.4∶1.6=60∶40指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书:学生认一认,说一说比例中的外项和内项。2.探究比例的基本性质。教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。教师板书:比例的基本性质。组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。验证其他的比例有没有这个规律,举例说明,检验发现。如:∶0.5=1.2∶,两个外项的积是×=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。如果把比例改成分数形式呢?如:=,3×15=5×9。等号两边的分子和分母分别交叉相乘,所得的积相等。教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。3.应用比例的基本性质,判断哪两个比可以组成比例。6∶3和8∶50.2∶2.5和4∶50组织学生在小组中互相交流,然后指名汇报。4.教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法?学生讨论交流后,指名回答。教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。【课堂作业】教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。【课堂小结】通过这节课的学习,你有哪些收获?【课后作业】教材第43页练习八第5题。教学板书:比例的基本性质在比例里,两个外项之积等于两个内项之积。这叫做比例的基本性质。教学反思:1.在教学比例各部分名称的过程中,应该特别强调哪部分是外项,哪部分是内项。2.注意将比和比例进行对比,能找出相同之处和不同之处。3.给学生自主的思考时间,让他们写出尽可能多的比例,并请同桌互相检验。4.将比例写成分数的形式,让学生多角度地观察比例,可以为接下来的解比例学习打下基础。

解比例教学导航:【教学内容】解比例。(教材第42页例2、例3及练习八的习题)。【教学目标】1.使学生学会解比例的方法,进一步理解并掌握比例的基本性质。2.培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。【重点难点】1.使学生掌握解比例的方法,学会解比例。2.引导学生根据比例的基本性质,将带未知数的比例改写成方程。【教学准备】多媒体课件。教学过程:【情景导入】上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?学生在小组中议一议,再汇报。师:这节课,我们还要继续学习有关比例的知识,就是解比例。板书课题:解比例。【新课讲授】1.教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。2.教学例2。教师用多媒体课件出示例2。指名读题,根据题意,描述两个相等的比。=110或模型高度:实际高度=1∶10。让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?教师板书:x∶320=1∶10,你能试着计算出来吗?请一名学生板演,其余的学生在练习本上做。做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。师:怎样解这个方程?生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。3.教学例3。解比例:过程要求:学生独立练习,求出未知项。同学之间互相交流,发现问题,及时解决。请一位学生上台板演。解:2.4x=1.5×6x=x=3.75提问:还可以用其他的知识解比例吗?学生交流后,可能会说出:根据比例的意义,等号左边的比值是,要使等号右边的比值也是,x应等于。4.总结解比例的方法。教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?学生回忆解比例的过程。教师:从上面的过程可以看出,在解比例的过程中哪一步是新知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论