![四川省长宁县培风中学2023年高二上数学期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view/755d72a8e1d73bab9fcf071fcb52a4a5/755d72a8e1d73bab9fcf071fcb52a4a51.gif)
![四川省长宁县培风中学2023年高二上数学期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view/755d72a8e1d73bab9fcf071fcb52a4a5/755d72a8e1d73bab9fcf071fcb52a4a52.gif)
![四川省长宁县培风中学2023年高二上数学期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view/755d72a8e1d73bab9fcf071fcb52a4a5/755d72a8e1d73bab9fcf071fcb52a4a53.gif)
![四川省长宁县培风中学2023年高二上数学期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view/755d72a8e1d73bab9fcf071fcb52a4a5/755d72a8e1d73bab9fcf071fcb52a4a54.gif)
![四川省长宁县培风中学2023年高二上数学期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view/755d72a8e1d73bab9fcf071fcb52a4a5/755d72a8e1d73bab9fcf071fcb52a4a55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省长宁县培风中学2023年高二上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列有关命题的表述中,正确的是()A.命题“若是偶数,则,都是偶数”的否命题是假命题B.命题“若为正无理数,则也是无理数”的逆命题是真命题C.命题“若,则”的逆否命题为“若,则”D.若命题“”,“”均为假命题,则,均为假命题2.函数,若实数是函数的零点,且,则()A. B.C. D.无法确定3.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣24.数列中,,,若,则()A.2 B.3C.4 D.55.已知点到直线的距离为1,则m的值为()A.或 B.或15C.5或 D.5或156.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A. B.C. D.7.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.8.已知函数,在上随机取一个实数,则使得成立的概率为()A. B.C. D.9.已知椭圆的长轴长为,短轴长为,则椭圆上任意一点到椭圆中心的距离的取值范围是()A. B.C. D.10.已知公差不为0的等差数列中,,且,,成等比数列,则其前项和取得最大值时,的值为()A.12 B.13C.12或13 D.13或1411.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)12.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数处取极值,则___________14.若向量,,,且向量,,共面,则______15.写出一个公比为3,且第三项小于1的等比数列______16.某中学高一年级有420人,高二年级有460人,高三年级有500人,用分层抽样的方法抽取部分样本,若从高一年级抽取21人,则从高三年级抽取的人数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线过点,是抛物线的焦点,直线交抛物线于另一点,为坐标原点.(1)求抛物线的方程和焦点的坐标;(2)抛物线的准线上是否存在点使,若存在请求出点坐标,若不存在请说明理由.18.(12分)如图,在四棱锥S−ABCD中,底面ABCD为矩形,,AB=2,,平面,,,E是SA的中点(1)求直线EF与平面SCD所成角的正弦值;(2)在直线SC上是否存在点M,使得平面MEF平面SCD?若存在,求出点M的位置;若不存在,请说明理由19.(12分)在平面直角坐标系xOy中,椭圆C:的左,右顶点分别为A、B,点F是椭圆的右焦点,,(1)求椭圆C的方程;(2)不过点A的直线l交椭圆C于M、N两点,记直线l、AM、AN的斜率分别为k、、.若,证明直线l过定点,并求出定点的坐标20.(12分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.21.(12分)分别求出满足下列条件的椭圆的标准方程:(1)焦点在y轴,短轴长为2,离心率为;(2)短轴一端点P与两焦点,连线所构成的三角形为等边三角形22.(10分)已知数列和中,,且,.(1)写出,,,,猜想数列和的通项公式并证明;(2)若对于任意都有,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】对于选项A:根据偶数性质即可判断;对于选项B:通过举例即可判断,对于选项C:利用逆否命题的概念即可判断;对于选项D:根据且、或和非的关系即可判断.【详解】选项A:原命题的否命题为:若不是偶数,则,不都是偶数,若,都是偶数,则一定是偶数,从而原命题的否命题为真命题,故A错误;选项B:原命题的逆命题:若是无理数,则也为正无理数,当,即为无理数,但是有理数,故B错误;选项C:由逆否命题的概念可知,C正确;选项D:由为假命题可知,,至少有一个为假命题,由为假命题可知,和均为假命题,故为假命题,为真命题,故D错误.故选:C.2、A【解析】利用函数在递减求解.【详解】因为函数在递减,又实数是函数的零点,即,又因为,所以,故选:A3、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.4、C【解析】由已知得数列是以2为首项,以2为公比的等比数列,求出,再利用等比数列求和可得答案.【详解】∵,∴,所以,数列是以2为首项,以2为公比的等比数列,则,∴,∴,则,解得.故选:C.5、D【解析】利用点到直线距离公式即可得出.【详解】解:点到直线的距离为1,解得:m=15或5故选:D.6、D【解析】先由抛物线方程求出点的坐标,准线方程为,再由可求得点的横坐标为4,从而可求出点的纵坐标,进而可求出的面积【详解】由题意可得点的坐标,准线方程为,因为为抛物线上一点,,所以点的横坐标为4,当时,,所以,所以的面积为,故选:D7、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.8、B【解析】首先求不等式的解集,再根据区间长度,求几何概型的概率.【详解】由,得,解得,在区间上随机取一实数,则实数满足不等式的概率为故选:B9、A【解析】不妨设椭圆的焦点在轴上,设点,则,且有,利用二次函数的基本性质可求得的取值范围.【详解】不妨设椭圆的焦点在轴上,则该椭圆的标准方程为,设点,则,且有,所以,.故选:A.10、C【解析】设等差数列的公差为q,根据,,成等比数列,利用等比中项求得公差,再由等差数列前n项和公式求解.【详解】设等差数列的公差为q,因为,且,,成等比数列,所以,解得,所以,所以当12或13时,取得最大值,故选:C11、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.12、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】=.因为f(x)在1处取极值,所以1是f′(x)=0的根,将x=1代入得a=3.故答案为3.考点:利用导数研究函数的极值14、##【解析】由向量共面的性质列出方程组求解即可.【详解】因为,,共面,所以存在实数x,y,使得,得,解得∴故答案为:15、(答案不唯一)【解析】由条件确定该等比数列的首项的可能值,由此确定该数列的通项公式.【详解】设数列的公比为,则,由已知可得,∴,所以,故可取,故满足条件的等比数列的通项公式可能为,故答案为:(答案不唯一)16、25【解析】由条件先求出抽样比,从而可求出从高三年级抽取的人数.【详解】由题意抽样比例:则从高三年级抽取的人数是人故答案为:25三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线的方程为,焦点坐标为(2)存在,且【解析】(1)根据点坐标求得,进而求得抛物线的方程和焦点的坐标.(2)设,根据列方程,化简求得的坐标.【小问1详解】将代入得,所以抛物线的方程为,焦点坐标为.【小问2详解】存在,理由如下:直线的方程为,或,即.抛物线的准线,设,,即,所以.即存在点使.18、(1)(2)存在,M与S重合【解析】(1)分别取AB,BC中点M,N,易证两两互相垂直,以为正交基底,建立空间直角坐标系,先求得平面SCD的一个法向量,再由求解;(2)假设存在点M,使得平面MEF平面SCD,再求得平面MEF的一个法向量,然后由求解.小问1详解】解:分别取AB,BC中点M,N,则,又平面则两两互相垂直,以为正交基底,建立如图所示的空间直角坐标系,,所以,设平面SCD的一个法向量为,,,则,,直线EF与平面SBC所成角的正弦值为.【小问2详解】假设存在点M,使得平面MEF平面SCD,,,设平面MEF的一个法向量,,令,则,平面MEF平面SCD,,,存在点,此时M与S重合.19、(1);(2)证明见解析,(-5,0).【解析】(1)写出A、B、F的坐标,求出向量坐标,根据向量的关系即可列出方程组,求得a、b、c和椭圆的标准方程;(2)设直线l的方程为y=kx+m,,.联立直线l与椭圆方程,根据韦达定理得到根与系数的关系,求出,根据即可求得k和m的关系,即可证明直线过定点并求出该定点.【小问1详解】由题意,知A(-a,0),B(a,0),F(c,0)∵,∴解得从而b2=a2-c2=3∴椭圆C的方程;【小问2详解】设直线l的方程为y=kx+m,,∵直线l不过点A,因此-2k+m≠0由得时,,,∴由,可得3k=m-2k,即m=5k,故l的方程为y=kx+5k,恒过定点(-5,0).20、(1),(2)【解析】(1)由题意可得,从而可求出,进而可求得的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求得结果【详解】(1)因为数列是公差为2的等差数列,且成等比数列,所以即,解得,所以;(2)由(1)得,所以.21、(1)(2)【解析】(1)设出椭圆方程,根据短轴长和离心率求出,,从而求出椭圆方程;(2)短轴端点与焦点相连所得的线段长即为,从而求出,得到椭圆方程.【小问1详解】设椭圆方程为,则,,则,解得:,则该椭圆的方程为【小问2详解】设椭圆方程为,由题得:,,则,则该椭圆的方程为22、(1),,,证明见解析(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保安人员技术素养提升的路径计划
- 公共服务行业的品牌工作计划
- 苗圃未来希望助力孩子成长计划
- 加强跨国经营管理提升全球竞争力计划
- 弘扬学生尊重劳动的精神计划
- 2025年地理信息大数据合作协议书
- 2025年中国橡胶行业市场运行态势、产业链全景及发展趋势报告
- 七年级下册《立方根》课件与练习
- 利用大数据分析预测用户需求变化
- 2025年路面清洁装备项目建议书
- 四新技术培训
- 人教版一年级数学2024版上册期末测评(提优卷一)(含答案)
- 浙江省杭州市2024年中考语文试卷(含答案)
- 码头安全生产知识培训
- 初中数学解《一元二次方程》100题含答案解析
- 种植二期手种植义齿II期手术护理配合流程
- 安全隐患举报奖励制度
- 牛津书虫系列1-6级 双语 4B-03.金银岛中英对照
- 沥青拌合站安装专项施工方案
- 2024-2025学年深圳市南山区六年级数学第一学期期末学业水平测试试题含解析
- 2024-2030年中国免疫细胞存储行业市场发展分析及竞争形势与投资战略研究报告
评论
0/150
提交评论