版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
铜川市重点中学2023-2024学年数学高二上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C的离心率为,则双曲线C的渐近线方程为()A. B.C. D.2.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.3.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.4.设集合,集合,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知命题是真命题,那么的取值范围是()A. B.C. D.6.设为坐标原点,抛物线的焦点为,为抛物线上一点.若,则的面积为()A. B.C. D.7.已知椭圆经过点,当该椭圆的四个顶点构成的四边形的周长最小时,其标准方程为()A. B.C. D.8.已知双曲线:的左、右焦点分别为,,点在双曲线上.若为钝角三角形,则的取值范围是A. B.C. D.9.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3C. D.210.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣211.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.712.抛物线的焦点到准线的距离是A. B.1C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是一个边长为2的正方体的平面展开图,在这个正方体中,则下列说法中正确的序号是___________.①直线与直线垂直;②直线与直线相交;③直线与直线平行;④直线与直线异面;14.曲线在点处的切线方程是______.15.已知为曲线:上一点,,,则的最小值为______16.直线与直线间的距离为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围18.(12分)在数列中,,.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.19.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值20.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.21.(12分)已知椭圆的离心率为,右焦点到上顶点的距离为.(1)求椭圆的方程;(2)斜率为2的直线经过椭圆的左焦点,且与椭圆相交于两点,求的面积.22.(10分)根据下列条件求圆的方程:(1)圆心在点O(0,0),半径r=3(2)圆心在点O(0,0),且经过点M(3,4)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据双曲线的离心率,求出即可得到结论【详解】∵双曲线的离心率是,∴,即1+,即1,则,即双曲线的渐近线方程为,故选:B2、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A3、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D4、A【解析】解不等式求集合,然后判断两个集合的关系【详解】,解得,故,可化为或,解得或,故,故“”是“”的充分不必要条件故选:A5、C【解析】依据题意列出关于的不等式,即可求得的取值范围.【详解】当时,仅当时成立,不符合题意;当时,若成立,则,解之得综上,取值范围是故选:C6、D【解析】先由抛物线方程求出点的坐标,准线方程为,再由可求得点的横坐标为4,从而可求出点的纵坐标,进而可求出的面积【详解】由题意可得点的坐标,准线方程为,因为为抛物线上一点,,所以点的横坐标为4,当时,,所以,所以的面积为,故选:D7、A【解析】把点代入椭圆方程得,写出椭圆顶点坐标,计算四边形周长讨论它取最小值时的条件即得解.【详解】依题意得,椭圆的四个顶点为,顺次连接这四个点所得四边形为菱形,其周长为,,当且仅当,即时取“=”,由得a2=12,b2=4,所求标准方程为.故选:A【点睛】给定两个正数和(两个正数倒数和)为定值,求这两个正数倒数和(两个正数和)的最值问题,可借助基本不等式中“1”的妙用解答.8、C【解析】根据双曲线的几何性质,结合余弦定理分别讨论当为钝角时的取值范围,根据双曲线的对称性,可以只考虑点在双曲线上第一象限部分即可.【详解】由题:双曲线:的左、右焦点分别为,,点在双曲线上,必有,若为钝角三角形,根据双曲线的对称性不妨考虑点在双曲线第一象限部分:当为钝角时,在中,设,有,,即,,所以;当时,所在直线方程,所以,,,根据图象可得要使,点向右上方移动,此时,综上所述:的取值范围是.故选:C【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想.9、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线定义,考查数形结合的数学思想方法,属于基础题.10、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B11、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D12、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.二、填空题:本题共4小题,每小题5分,共20分。13、①④【解析】画出正方体,,,故,①正确,根据相交推出矛盾得到②错误,根据,与相交得到③错误,排除共面的情况得到④正确,得到答案.【详解】如图所示的正方体中,,,故,①正确;若直线与直线相交,则四点共面,即在平面内,不成立,②错误;,与相交,故直线与直线不平行,③错误;,与不平行,故与不平行,若与相交,则四点共面,在平面内,不成立,故直线与直线异面,④正确;故答案为:①④.14、x-y-2=0【解析】解:因为曲线在点(1,-1)处的切线方程是由点斜式可知为x-y-2=015、【解析】曲线是抛物线的右半部分,是抛物线的焦点,作出抛物线的准线,把转化为到准线的距离,则到准线的距离为所求距离和的最小值【详解】易知曲线是抛物线的右半部分,如图,因为抛物线的准线方程为,是抛物线的焦点,所以等于到直线的距离.过作该直线的垂线,垂足为,则的最小值为故答案为:16、【解析】利用平行间的距离公式可求得结果.【详解】由平行线间的距离公式可知,直线、间的距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.18、(1)证明见解析,;(2).【解析】(1)利用等比数列的定义结合已知条件即可得到证明.(2)运用分组求和的方法,利用等比数列和等差数列前项和公式求解即可.【详解】(1)证明:∵,∴数列为首项是2,公比是2的等比数列.∴,∴.(2)由(1)知,,【点睛】本题考查等比数列的定义,通项公式的应用,考查等差数列和等比数列前项和公式的应用,考查分组求和的方法,属于基础题.19、(1)答案见解析;(2).【解析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为20、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或21、(1);(2).【解析】(1)由题可得,即求;(2)由题可设直线方程,联立椭圆方程,利用韦达定理法结合三角形面积公式即求.【小问1详解】由题意可得,解得,所以椭圆的方程为.【小问2详解】解法一:由(1)得,则由题意可设直线,代入椭圆方程整理可得,设,则,则由弦长公式知,又设到的距离为,则由点到直线距离公式可得,的面积,即所求面积为.解法二:由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《环境微生物学》本科题集
- 九江-PEP-2024年小学三年级上册英语第四单元期末试卷
- DB5120T 22-2024 柠檬种植农业气象服务规范
- 广西来宾市兴宾区2023-2024学年七年级下学期期中考试英语试题(含答案)
- 勾股定理的综合探究题型(原卷版+解析)
- 2024年非标智能装备项目资金需求报告
- 氧化石墨烯粉体失重率测定 热重分析法-征求意见稿
- 2.5.1 三角函数的应用-仰俯角、方向角问题 同步练习
- 保育员技能培训试题及答案
- 酯油脂-2024年高中化学讲义(选择性必修三)
- 煤矿瓦斯超限分析及预防措施
- 压力容器风险评估报告样板
- 涂层工安全操作规程
- 含砷硫化铜精矿的氧化焙烧
- 维修电工高级实操题库
- 风电场安全性评价
- 《羲之雅好服食养性》2021年湖北随州中考文言文阅读真题(含答案与翻译)
- 2023年全国统一高考英语试卷(甲卷)及答案解析
- 新生儿科品管圈成果汇报模板成品-降低新生儿红臀发生率课件
- 饲料公司总经理岗位职责
- 体育课少年拳(第一套)教案
评论
0/150
提交评论