云南省昆明市官渡一中2023-2024学年高二数学第一学期期末教学质量检测试题含解析_第1页
云南省昆明市官渡一中2023-2024学年高二数学第一学期期末教学质量检测试题含解析_第2页
云南省昆明市官渡一中2023-2024学年高二数学第一学期期末教学质量检测试题含解析_第3页
云南省昆明市官渡一中2023-2024学年高二数学第一学期期末教学质量检测试题含解析_第4页
云南省昆明市官渡一中2023-2024学年高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市官渡一中2023-2024学年高二数学第一学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.3.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.4.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-35.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺6.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.7.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.8.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.9.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.210.设等差数列,前n项和分别是,若,则()A.1 B.C. D.11.如图,已知双曲线的左右焦点分别为、,,是双曲线右支上的一点,,直线与轴交于点,的内切圆半径为,则双曲线的离心率是()A. B.C. D.12.圆与圆的位置关系是()A.内含 B.相交C.外切 D.外离二、填空题:本题共4小题,每小题5分,共20分。13.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共弦,,若,则两圆圆心的距离___________14.已知随机变量,且,则______.15.如图,在四面体中,BA,BC,BD两两垂直,,,则二面角的大小为______16.,利用课本中推导等差数列前项和的公式的方法,可求得______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,且存在两个极值点、,其中.(1)求实数的取值范围;(2)若恒成立,求最小值.18.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.19.(12分)已知直线恒过抛物线的焦点F(1)求抛物线的方程;(2)若直线与抛物线交于A,B两点,且,求直线的方程20.(12分)已知椭圆的离心率为,以椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积为(1)求椭圆C的标准方程;(2)过点作直线l与椭圆C相切于点Q,且直线l斜率大于0,过线段PQ的中点R作直线交椭圆于A,B两点(点A,B不在y轴上),连结PA,PB,分别与椭圆交于点M,N,试判断直线MN的斜率是否为定值;若是,请求出该定值21.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和22.(10分)已知,,函数,直线是函数图象的一条对称轴(1)求函数的解析式及单调递增区间;(2)若,,的面积为,求的周长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A2、B【解析】根据代入计算化简即可.【详解】故选:B.3、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.4、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.5、A【解析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.6、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.7、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.8、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.9、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.10、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B11、D【解析】根据给定条件结合直角三角形内切圆半径与边长的关系求出双曲线实半轴长a,再利用离心率公式计算作答.【详解】依题意,,的内切圆半径,由直角三角形内切圆性质知:,由双曲线对称性知,,于是得,即,又双曲线半焦距c=2,所以双曲线的离心率.故选:D【点睛】结论点睛:二直角边长为a,b,斜边长为c的直角三角形内切圆半径.12、C【解析】分别求出两圆的圆心、半径,再求出两圆的圆心距即可判断作答.【详解】圆的圆心,半径,圆,即的圆心,半径,则,即有,所以圆与圆外切.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心角即可,通过球的性质构成的直角三角形即可解得【详解】∵,球半径为4,∴小圆的半径为,∵小圆中弦长,作垂直于,∴,同理可得,在直角三角形中,∵,,∴,∴,∴故答案为:.14、【解析】根据二项分布的均值与方差的关系求得,再根据方差的性质求解即可.【详解】,所以,又因为,所以故答案为:12【点睛】本题主要考查了二项分布的均值与方差的计算,同时也考查了方差的性质,属于基础题.15、【解析】取的中点为,连接,由面面角的定义得出二面角的平面角为,再结合等腰直角三角形的性质得出二面角的大小.【详解】取的中点为,连接,因为,所以二面角的平面角为,因为,,所以为等腰直角三角形,即二面角的大小为.故答案为:16、2020【解析】先证得,利用倒序相加法求得表达式值.【详解】解:由题意可知,令S=则S=两式相加得,故填:【点睛】本题考查借助倒序相加求函数值的和,属于中档题,解题关键是找到的规律三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)存在两个极值点,等价于其导函数有两个相异零点;(2)适当构造函数,并注意与关系,转化为函数求最大值问题,即可求得的范围.【小问1详解】(),,函数存在两个极值点、,且,关于的方程,即在内有两个不等实根,令,,即,,实数的取值范围是.【小问2详解】函数在上有两个极值点,由(1)可得,由,得,则,,,,,,,,令,则且,令,,,再设,则,,,即在上是减函数,(1),,在上是增函数,(1),,恒成立,恒成立,,的最小值为.【点睛】关键点点睛:本题考查导函数,函数的单调性,最值,不等式证明,考查学生分析解决问题的能力,解题的关键是将恒成立,转化为恒成立,化简,令,则化为,然后构造函数,利用导数求出其最大值即可,属于较难题18、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.19、(1)(2)或【解析】(1)把直线化为,得到抛物线的焦点为,求得,即可求得抛物线的方程;(2)联立方程组,得到,,结合,列出方程求得的值,即可求得直线的方程【小问1详解】解:将直线化为,可得直线恒过点,即抛物线的焦点为,所以,解得,所以抛物线的方程为【小问2详解】解:由题意显然,联立方程组,整理得,设,,则,,因为,所以,解得,所以或,所以直线的方程为或20、(1)(2)是,【解析】(1)根据离心率以及椭圆两个焦点与短轴的一个端点为顶点构成的三角形的面积列出等式即可求解;(2)设出相关直线与相关点的坐标,直线与椭圆联立,点的坐标配合斜率公式化简,再运用韦达理化简可证明.【小问1详解】由题意得,解得,则椭圆C的标准方程为【小问2详解】设切线PQ的方程为,,,,,由,消去y得①,则,解得或(舍去),将代入①得,,解得,则,所以,又R为PQ中点,则,因为PA,PB斜率都存在,不妨设,,由①可得,所以,,同理,,则,又R,A,B三点共线,则,化简得,所以.21、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:22、(1),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论