浙江省宁波市奉化高中、三山高中等六校2024届高二数学第一学期期末经典试题含解析_第1页
浙江省宁波市奉化高中、三山高中等六校2024届高二数学第一学期期末经典试题含解析_第2页
浙江省宁波市奉化高中、三山高中等六校2024届高二数学第一学期期末经典试题含解析_第3页
浙江省宁波市奉化高中、三山高中等六校2024届高二数学第一学期期末经典试题含解析_第4页
浙江省宁波市奉化高中、三山高中等六校2024届高二数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市奉化高中、三山高中等六校2024届高二数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为()A.99 B.131C.139 D.1412.若函数单调递增,则实数a的取值范围为()A. B.C. D.3.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.1984.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.05.已知双曲线的左、右焦点分别为,,点在双曲线的右支上,且,则双曲线离心率的取值范围是()A. B.C. D.6.已知椭圆与双曲线有相同的焦点,则的值为A. B.C. D.7.在等比数列{}中,,,则=()A.9 B.12C.±9 D.±128.已知是等差数列的前项和,,,则的最小值为()A. B.C. D.9.等差数列中,为其前项和,,则的值为()A.13 B.16C.104 D.20810.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.911.若向量,,则()A. B.C. D.12.已知圆的方程为,则圆心的坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若x,y满足约束条件,则的最小值为___________.14.已知函数,是的导函数,则______15.已知圆M过,,且圆心M在直线上.(1)求圆M的标准方程;(2)过点的直线m截圆M所得弦长为,求直线m的方程;16.椭圆x2+=1上的点到直线x+y-4=0的距离的最小值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱锥中,为等边三角形,且面面,(1)求证:;(2)当与平面BCD所成角为45°时,求二面角的余弦值18.(12分)已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.19.(12分)如图,AC是圆O的直径,B是圆O上异于A,C的一点,平面ABC,点E在棱PB上,且,,.(1)求证:;(2)当三棱锥的体积最大时,求二面角的余弦值.20.(12分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.21.(12分)已知抛物线的焦点为F,为抛物线C上的点,且.(1)求抛物线C的方程;(2)若直线与抛物线C相交于A,B两点,求弦长.22.(10分)设函数,其中是自然对数的底数,.(1)若,求的最小值;(2)若,证明:恒成立.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得,则.故选:D2、D【解析】根据函数的单调性,可知其导数在R上恒成立,分离参数,即可求得答案.【详解】由题意可知单调递增,则在R上恒成立,可得恒成立,当时,取最小值-1,故,故选:D3、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A4、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B5、C【解析】根据双曲线的定义求得,利用可得离心率范围【详解】因为,又,所以,,又,即,,所以离心率故选:C6、C【解析】根据题意可知,结合的条件,可知,故选C考点:椭圆和双曲线性质7、D【解析】根据题意,设等比数列的公比为,由等比数列的性质求出,再求出【详解】根据题意,设等比数列的公比为,若,,则,变形可得,则,故选:8、C【解析】根据,可得,再根据,得,从而可得出答案.【详解】解:因为,所以,又,所以,所以的最小值为.故选:C.9、D【解析】利用等差数列下标的性质,结合等差数列前项和公式进行求解即可.【详解】由,所以,故选:D10、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B11、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,,,与不垂直,若,则,,但是,,因此与不共线故选:D12、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】作出可行域,进而根据z的几何意义求得答案.【详解】如图,作出可行域,由z的几何意义可知当过点B时取得最小值.联立,则最小值为.故答案为:.14、2【解析】根据基本初等函数的导数公式及导数的加法法则,对求导,再求即可.【详解】由题设,,所以.故答案为:15、(1)(2)或【解析】(1)首先由条件设圆的标准方程,再将圆上两点代入,即可求得圆的标准方程;(2)分斜率不存在和存在两种情况,分别根据弦长公式,求得直线方程.【小问1详解】圆心在直线上,设圆的标准方程为:,圆过点,,,解得圆的标准方程为【小问2详解】①当斜率不存在时,直线m的方程为:,直线m截圆M所得弦长为,符合题意②当斜率存在时,设直线m:,圆心M到直线m的距离为根据垂径定理可得,,,解得直线m方程为或.16、【解析】设与直线x+y-4=0平行的直线方程为,求出即得解.【详解】解:设与直线x+y-4=0平行的直线方程为,所以,代入椭圆方程得,令或.当时,平行线间的距离为;当时,平行线间的距离为.所以最小距离为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据给定条件证得平面即可推理作答.(2)由与平面BCD所成角确定正边长与CD长的关系,再作出二面角的平面角,借助余弦定理计算作答.【小问1详解】在三棱锥中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小问2详解】取BC中点F,连接AF,DF,如图,因为等边三角形,则,而平面平面,平面平面,平面,于是得平面,是与平面BCD所成角,即,令,则,因,即有,由(1)知,,则有,过C作交AD于O,在平面内过O作交BD于E,连CE,从而得是二面角的平面角,中,,,中,由余弦定理得,,,显然E是斜边中点,则,中,由余弦定理得,所以二面角的余弦值.18、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在两种情况,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理列出方程,求出定点坐标,当斜率不存在时,设出点的坐标进行求解;(2)结合第一问的定点坐标,结合直角三角形斜边中线得到存在点,使得为定值,求出结果.【小问1详解】设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得:,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点【小问2详解】由(1)可知因为,取中点,则此时,【点睛】直线过定点问题,一般处理思路是分斜率存在和斜率不存在两种情况,特别是斜率存在时,设出直线为,联立后用韦达定理得到两根之和与两根之积,结合题干条件得到等量关系,求出的关系,进而得到定点坐标.19、(1)证明见解析(2)【解析】(1)由圆的性质可得,再由线面垂直的性质可得,从而由线面垂直的判定定理可得平面PAB,所以得,再结合已知条件可得平面PBC,由线面垂直的性质可得结论;(2)由已知条件结合基本不等式可得当三棱锥的体积最大时,是等腰直角三角形,,从而以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,利用空间向量求解.【小问1详解】证明:因为AC是圆O的直径,点B是圆O上不与A,C重合的一个动点,所以.因为平面ABC,平面ABC,所以.因为,且AB,平面PAB,所以平面PAB.因为平面PAB,所以.因为,,且BC,平面PBC,所以平面PBC.因为平面PBC,所以.【小问2详解】解:因为,,所以,所以三棱锥的体积,(当且仅当“”时等号成立).所以当三棱锥的体积最大时,是等腰直角三角形,.所以以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,则,,,.因为∽,所以,因为,,所以,所以,.设向量为平面的一个法向量,则即令得,.向量为平面ABC的一个法向量,.因为二面角是锐角,所以二面角的余弦值为.20、(1),是奇函数(2)【解析】(1)由求出,进而求得的解析式,利用奇偶函数的定义判断函数的奇偶性即可;(2)根据幂函数的单调性可得函数的单调性,求出函数的最小值,将不等式恒成立转化为对任意使得恒成立即可.【小问1详解】因为,所以,所以.所以.的定义城为,且,所以是奇函数.【小问2详解】因为,在上均为增函数,所以在上增函数,所以.对任意,不等式恒成立,则,所以,即实数a的取值范固为.21、(1);(2)【解析】(1)根据抛物线定义可得,从而得到抛物线C的方程;(2)设,联立抛物线方程,消去,可得的方程,运用韦达定理和弦长公式,计算可得所求值【详解】(1),所以,即抛物线C的方程.(2)设,由得所以,所以.【点睛】方法点睛:计算抛物线弦长方法,(1)若直线过抛物线的焦点,则弦长|AB|=x1+x2+p=(α为弦AB的倾斜角)(2)若直线不过抛物线的焦点,则用|AB|=·|x1-x2|求解22、(1)(2)证明见解析【解析】(1)当时,,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论