云南省宣威市二中2023年高二上数学期末学业质量监测模拟试题含解析_第1页
云南省宣威市二中2023年高二上数学期末学业质量监测模拟试题含解析_第2页
云南省宣威市二中2023年高二上数学期末学业质量监测模拟试题含解析_第3页
云南省宣威市二中2023年高二上数学期末学业质量监测模拟试题含解析_第4页
云南省宣威市二中2023年高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省宣威市二中2023年高二上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,若,,则()A. B.C. D.2.在如图所示的棱长为1的正方体中,点P在侧面所在的平面上运动,则下列四个命题中真命题的个数是()①若点P总满足,则动点P的轨迹是一条直线②若点P到点A的距离为,则动点P的轨迹是一个周长为的圆③若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆④若点P到平面的距离与到直线CD的距离相等,则动点P的轨迹是抛物线A.1 B.2C.3 D.43.已知、分别是椭圆的左、右焦点,A是椭圆上一动点,圆C与的延长线、的延长线以及线段相切,若为其中一个切点,则()A. B.C. D.与2的大小关系不确定4.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B.C. D.5.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定6.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.7.若定义在R上的函数的图象如图所示,为函数的导函数,则不等式的解集为()A. B.C. D.8.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数9.若双曲线一条渐近线被圆所截得的弦长为,则双曲线的离心率是()A. B.C. D.10.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.11.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B.C. D.12.已知双曲线C:的渐近线方程是,则m=()A.3 B.6C.9 D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上一点到其焦点的距离为,则的值为______14.记为等差数列的前n项和.若,则__________15.如图,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈,〉=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________16.点到直线的距离为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.18.(12分)如图,在三棱柱中,=2,且,⊥底面ABC.E为AB中点(1)求证:平面;(2)求平面与平面CEB夹角的余弦值19.(12分)如图1,已知正方形的边长为,分别为的中点,将正方形沿折成如图2所示的二面角,点在线段上(含端点)运动,连接(1)若为的中点,直线与平面交于点,确定点位置,求线段的长;(2)若折成二面角大小为,是否存在点M,使得直线与平面所成的角为,若存在,确定出点的位置;若不存在,请说明理由20.(12分)已知复数,是实数.(1)求复数z;(2)若复数在复平面内所表示的点在第二象限,求实数m的取值范围.21.(12分)如图,正方形与梯形所在的平面互相垂直,,,|AB|=|AD|=2,|CD|=4,为的中点(1)求证:平面平面;(2)求二面角的正切值22.(10分)为弘扬中华优秀传统文化,鼓励全民阅读经典书籍,某市举行阅读月活动,现统计某街道约10000人在该活动月每人每日平均阅读时间(分钟)的频率分布直方图如图:(1)求x的值;(2)从该街道任选1人,则估计这个人的每日平均阅读时间超过60分钟的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B2、C【解析】根据线面关系、距离关系可分别对每一个命题判断.【详解】若点P总满足,又,,,可得对角面,因此点P的轨迹是直线,故①正确若点P到点A的距离为,则动点P的轨迹是以点B为圆心,以1为半径的圆(在平面内),因此圆的周长为,故②正确点P到直线AB的距离PB与到点C的距离PC之和为1,又,则动点P的轨迹是线段BC,因此③不正确点P到平面的距离(即到直线的距离)与到直线CD的距离(即到点C的距离)相等,则动点P的轨迹是以线段BC的中点为顶点,直线BC为对称轴的抛物线(在平面内),因此④正确故有①②④三个故选:C3、A【解析】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,由切线的性质可知:,,,结合椭圆的定义,即可得出结果.【详解】由题意知,圆C是的旁切圆,点是圆C与轴的切点,设圆C与直线的延长线、分别相切于点、,则由切线的性质可知:,,,所以,所以,所以.故选A【点睛】本题主要考查圆与圆锥曲线的综合,熟记椭圆的定义,以及切线的性质即可,属于常考题型.4、C【解析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.5、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.6、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.7、A【解析】由函数单调性得出和的解,然后分类讨论解不等式可得【详解】由图象可知:在为正,在为负,,可化为:或,解得或故选:A8、D【解析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.9、A【解析】根据(为弦长,为圆半径,为圆心到直线的距离),求解出的关系式,结合求解出离心率的值.【详解】取的一条渐近线,因为(为弦长,为圆半径,为圆心到直线的距离),其中,所以,所以,所以,所以,所以,故选:A.【点睛】关键点点睛:解答本题的关键是利用几何法表示出圆的半径、圆心到直线的距离、半弦长之间的关系.10、A【解析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【点睛】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.11、D【解析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D12、C【解析】根据双曲线的渐近线求得的值.【详解】依题意可知,双曲线的渐近线为,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线方程化为标准方程,利用抛物线的定义将抛物线上的点到焦点的距离转化为到准线的距离,再利用点到直线的距离公式进行求解.【详解】将抛物线化为,由抛物线定义得点到准线的距离为,即,解得故答案为:.14、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.15、(1,1,1)【解析】设PD=a,则D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐标为(1,1,1)16、【解析】利用点到直线的距离公式即可得出【详解】利用点到直线的距离可得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【点睛】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.18、(1)证明见解析;(2).【解析】(1)连接与交于点O,连接OE,得到,再利用线面平行的判定定理证明即可;(2)根据,底面,建立空间直角坐标系,求得平面的一个法向量,再根据底面,得到平面一个法向量,然后由夹角公式求解.【小问1详解】如图所示:连接与交于点O,连接OE,如图,由分别为的中点所以,又平面,平面,所以平面;【小问2详解】由,底面,故底面建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为:,则,即,令,则,则,因为底面,所以为平面一个法向量,所以所以平面与平面CEB夹角的余弦值为.19、(1)是的延长线与延长线的交点,且(2)存在,使得直线与平面所成的角为,且.【解析】(1)通过延长、以及全等三角形确定点的位置并求得线段的长.(2)建立空间直角坐标系,利用向量法判断符合题意的点是否存在.【小问1详解】延长,连接并延长,交的延长线于,由于,所以,所以.所以是的延长线与延长线的交点,且.【小问2详解】由于,所以平面,,由于平面,所以平面平面.建立如图所示空间直角坐标系,,设,,设平面的法向量为,则,故可设,由于直线与平面所成的角为,所以,整理得,解得或(舍去)存在,使得直线与平面所成的角为,且.20、(1)(2)【解析】(1)先将代入化简,再由其虚部为零可求出的值,从而可求出复数,(2)先对化简,再由题意可得从而可求得结果【小问1详解】因为,所以,因为是实数,所以,解得.故.【小问2详解】因为,所以.因为复数所表示的点在第二象限,所以解得,即实数m的取值范围是.21、(1)见解析;(2).【解析】(1)证明BC⊥平面BDE即可;(2)以D为原点,DA、DC、DE分别为x轴、y轴、z轴建立空间直角坐标系D-xyz,求平面BMD和平面BCD的法向量,利用法向量的求二面角的余弦,再求正切﹒【小问1详解】∵ADEF为正方形∴ED⊥AD又∵正方形ADEF与梯形ABCD所在的平面互相垂直,且ED⊂平面ADEF∴ED⊥平面ABCD∵BC⊂平面ABCD∴ED⊥BC在直角梯形ABCD中,|AB|=|AD|=2,|CD|=4,则,|BD|=2,在△BCD中,,∴BC⊥BD∵DE∩BD=D,DE与BD平面BDE,∴BC⊥平面BDE又∵BC⊂平面BEC∴平面BDE⊥平面BEC;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论