2023七年级数学下册第2章整式的乘法2.1整式的乘法2.1.2幂的乘方与积的乘方第2课时积的乘方上课课件新版湘教版_第1页
2023七年级数学下册第2章整式的乘法2.1整式的乘法2.1.2幂的乘方与积的乘方第2课时积的乘方上课课件新版湘教版_第2页
2023七年级数学下册第2章整式的乘法2.1整式的乘法2.1.2幂的乘方与积的乘方第2课时积的乘方上课课件新版湘教版_第3页
2023七年级数学下册第2章整式的乘法2.1整式的乘法2.1.2幂的乘方与积的乘方第2课时积的乘方上课课件新版湘教版_第4页
2023七年级数学下册第2章整式的乘法2.1整式的乘法2.1.2幂的乘方与积的乘方第2课时积的乘方上课课件新版湘教版_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

积的乘方湘教版·七年级数学下册②复习导入幂乘方≈an??同底数幂的乘法幂的运算am·an=

am+n(m,n都是正整数).同底数幂相乘,底数不变,指数相加.m+nn

maaa幂的乘方(am)n=

amn(m,n都是正整数).幂的乘方,底数不变,指数相乘.mnn

maa积的乘方探究新知(3x)3=______;(4y)3=_______;(ab)3=_______.观察(3x)2=3x·3x=(3·3)·(x·x)=9x2.(4y)3=(4y)·(4y)·(4y)=(4·4·4)·(y·y·y)=64y3.(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)通过观察,你发现上述式子的指数和底数是怎样变化的?9x264y3a3b3=a3b3抽象猜想论证(乘方的意义)(使用交换律和结合律)积的乘方.观察抽象猜想论证探究新知(3x)3=______;(4y)3=_______;(ab)3=_______.(3x)2=3x·3x=(3·3)·(x·x)=9x2.(4y)3=(4y)·(4y)·(4y)=(4·4·4)·(y·y·y)=64y3.通过观察运算过程,你能推导出下面的公式吗?9x264y3a3b3(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3(乘方的意义)(使用交换律和结合律)求积的乘方.(ab)n=anbn(n是正整数)

anbn(3x)3=______;(4y)3=_______;(ab)3=_______.通过观察运算过程,你能推导出下面的公式吗?9x264y3a3b3(ab)n=观察抽象猜想论证(ab)n=(ab)·(ab)·····(ab)n个abn个b=(a·a·····a)·(b·b·····b)n个a=anbn(n都是正整数).证明:

anbn←乘方的意义←乘法分配律和结合律←乘方的意义(ab)n=

anbn(n都是正整数).于是,我们得到:积的乘方,求积的乘方.探究新知等于把积的每一个因式分别乘方,再把所得的幂相乘.[参见教材P55“因式”定义]abnbann探究新知(abc)n=?(n是正整数).(abc)n=(abc)·(abc)·····(abc)n个abcn个b=(a·a·····a)·(b·b·····b)·(c·c·····c)n个a=anbncn(n都是正整数).证明:anbncnn个c←乘方的意义←乘法分配律和结合律←乘方的意义探究新知积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=

anbn(n都是正整数).积的乘方同底数幂的乘法幂的运算幂的乘方(am)n=

amn(m,n都是正整数).mnn

maa幂的乘方,底数不变,指数相乘.am·an=

am+n(m,n都是正整数).m+nn

maaa同底数幂相乘,底数不变,指数相加.正整数指数幂正整数指数幂探究新知(am)n=

amn(m,n都是正整数).mnn

maa幂的乘方,底数不变,指数相乘.am·an=

am+n(m,n都是正整数).m+nn

maaa同底数幂相乘,底数不变,指数相加.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=

anbn(n都是正整数).底数相等指数相等逆用探究新知例6计算:(1)(﹣2x)3;(2)(﹣4xy)2;(3)(xy2)3;解:(1)(﹣2x)3=(﹣2)3·x3=﹣8x3.(2)(﹣4xy)2=(﹣4)2·x2·y2=16x2y2.(3)(xy2)3=x3·(y2)3=x3y6.[选自教材P34例题6]探究新知例7计算:2(a2b2)3-3(a3b3)2解:2(a2b2)3-3(a3b3)2=2a6b6-3a6b6=﹣a6b6[选自教材P34例题7]巩固练习1.计算:[选自教材P34练习第1题](2)(﹣xy)4解:(﹣xy)4=

(﹣1)4·

x4·

y4=

x4y4.(3)(﹣2m2n)3

解:(﹣2m2n)3=

(﹣2)3·(m2)3·(n)3=﹣8m6n3.

(4)(﹣3ab2c3)4解:(﹣3ab2c3)4

=(﹣3)4·a4·(b2)4·

(c3)4

=81a4b8c12(1)(

x)3

解:

x)3=

)3·x3=

x3.巩固练习2.

下面的计算对不对?如果不对,应怎样改正?(1)(ab3)2=ab6(2)(2xy)3=6x3y3.答:不对,应是(ab3)2=a2b6.答:不对,应是(2xy)3=8x3y3.[选自教材P34练习第2题]3.计算:﹣(

xyz

)4

(2x2y2z2

)2.解:

﹣(xyz

)4+

(2x2y2z2

)2=﹣x4y4z4+

4x4y4z4

=3x4y4z4.巩固练习[选自教材P34练习第3题]课堂小结积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=

anbn(n都是正整数).积的乘方同底数幂的乘法幂的运算幂的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论