




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绪论
1.从基本单位换算入手,将下列物理量的单位换算为SI单位。(1)水的黏度μ=0.00856g/(cm·s)(2)密度ρ=138.6kgf?s2/m4(3)某物质的比热容CP=0.24BTU/(lb·℉)(4)传质系数KG=34.2kmol/(m2?h?atm)(5)表面张力σ=74dyn/cm(6)导热系数λ=1kcal/(m?h?℃)解:本题为物理量的单位换算。(1)水的黏度基本物理量的换算关系为1kg=1000g,1m=100cm则(2)密度基本物理量的换算关系为1kgf=9.81N,1N=1kg?m/s2则(3)从附录二查出有关基本物理量的换算关系为1BTU=1.055kJ,lb=0.4536kg则(4)传质系数基本物理量的换算关系为1h=3600s,1atm=101.33kPa则(5)表面张力基本物理量的换算关系为1dyn=1×10–5N1m=100cm则(6)导热系数基本物理量的换算关系为1kcal=4.1868×103J,1h=3600s则2.乱堆25cm拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即式中HE—等板高度,ft;G—气相质量速度,lb/(ft2?h);D—塔径,ft;Z0—每段(即两层液体分布板之间)填料层高度,ft;α—相对挥发度,量纲为一;μL—液相黏度,cP;ρL—液相密度,lb/ft3A、B、C为常数,对25mm的拉西环,其数值分别为0.57、-0.1及1.24。试将上面经验公式中各物理量的单位均换算为SI单位。解:上面经验公式是混合单位制度,液体黏度为物理单位制,而其余诸物理量均为英制。经验公式单位换算的基本要点是:找出式中每个物理量新旧单位之间的换算关系,导出物理量“数字”的表达式,然后代入经验公式并整理,以便使式中各符号都变为所希望的单位。具体换算过程如下:(1)从附录查出或计算出经验公式有关物理量新旧单位之间的关系为(见1)α量纲为一,不必换算1=1=16.01kg/m2(2)将原符号加上“′”以代表新单位的符号,导出原符号的“数字”表达式。下面以HE为例:则同理(3)将以上关系式代原经验公式,得整理上式并略去符号的上标,便得到换算后的经验公式,即
第一章流体流动流体的重要性质1.某气柜的容积为6000m3,若气柜内的表压力为5.5kPa,温度为40℃。已知各组分气体的体积分数为:H240%、N220%、CO32%、CO27%、CH41%,大气压力为101.3kPa,试计算气柜满载时各组分的质量。解:气柜满载时各气体的总摩尔数各组分的质量:2.若将密度为830kg/m3的油与密度为710kg/m3的油各60kg混在一起,试求混合油的密度。设混合油为理想溶液。解:流体静力学3.已知甲地区的平均大气压力为85.3kPa,乙地区的平均大气压力为101.33kPa,在甲地区的某真空设备上装有一个真空表,其读数为20kPa。若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同?解:(1)设备内绝对压力绝压=大气压-真空度=(2)真空表读数真空度=大气压-绝压=4.某储油罐中盛有密度为960kg/m3的重油(如附图所示),油面最高时离罐底9.5m,油面上方与大气相通。在罐侧壁的下部有一直径为760mm的孔,其中心距罐底1000mm,孔盖用14mm的钢制螺钉紧固。若螺钉材料的工作压力为39.5×106Pa,问至少需要几个螺钉(大气压力为101.3×103Pa)?解:由流体静力学方程,距罐底1000mm处的流体压力为作用在孔盖上的总力为每个螺钉所受力为因此习题5附图习题4附图5.如本题附图所示,流化床反应器上装有两个U管压差计。读数分别为R1=500mm,R2=80mm,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U管与大气连通的玻璃管内灌入一段水,其高度R3=100mm。试求A、B两点的表压力。习题6附图解:(1)A点的压力习题6附图(2)B点的压力6.如本题附图所示,水在管道内流动。为测量流体压力,在管道某截面处连接U管压差计,指示液为水银,读数R=100mm,h=800mm。为防止水银扩散至空气中,在水银面上方充入少量水,其高度可以忽略不计。已知当地大气压力为101.3kPa,试求管路中心处流体的压力。解:设管路中心处流体的压力为p根据流体静力学基本方程式,则7.某工厂为了控制乙炔发生炉内的压力不超过13.3kPa(表压),在炉外装一安全液封管(又称水封)装置,如本题附图所示。液封的作用是,当炉内压力超过规定值时,气体便从液封管排出。试求此炉的安全液封管应插入槽内水面下的深度h。习题7附图解:习题7附图流体流动概述8.密度为1800kg/m3的某液体经一内径为60mm的管道输送到某处,若其平均流速为0.8m/s,求该液体的体积流量(m3/h)、质量流量(kg/s)和质量通量[kg/(m2·s)]。解:9.在实验室中,用内径为1.5cm的玻璃管路输送20℃的70%醋酸。已知质量流量为10kg/min。试分别用用SI和厘米克秒单位计算该流动的雷诺数,并指出流动型态。解:(1)用SI单位计算查附录70%醋酸在20℃时,故为湍流。(2)用物理单位计算,10.有一装满水的储槽,直径1.2m,高3m。现由槽底部的小孔向外排水。小孔的直径为4cm,测得水流过小孔的平均流速u0与槽内水面高度z的关系为:试求算(1)放出1m3水所需的时间(设水的密度为1000kg/m3);(2)又若槽中装满煤油,其它条件不变,放出1m3煤油所需时间有何变化(设煤油密度为800kg/m3)?解:放出1m3水后液面高度降至z1,则由质量守恒,得,(无水补充)(A为储槽截面积)故有即上式积分得11.如本题附图所示,高位槽内的水位高于地面7m,水从φ108mm×4mm的管道中流出,管路出口高于地面1.5m。已知水流经系统的能量损失可按∑hf=5.5u2计算,其中u为水在管内的平均流速(m/s)。设流动为稳态,试计算(1)A-A'截面处水的平均流速;(2)水的流量(m3/h)。解:(1)A-A'截面处水的平均流速在高位槽水面与管路出口截面之间列机械能衡算方程,得(1)式中z1=7m,ub1~0,p1=0(表压)z2=1.5m,p2=0(表压),ub2=5.5u2代入式(1)得(2)水的流量(以m3/h计)习题11附图习题12附图12.20℃的水以2.5m/s的平均流速流经φ38mm×2.5mm的水平管,此管以锥形管与另一φ53mm×3mm的水平管相连。如本题附图所示,在锥形管两侧A、B处各插入一垂直玻璃管以观察两截面的压力。若水流经A、B两截面间的能量损失为1.5J/kg,求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。解:在A、B两截面之间列机械能衡算方程式中z1=z2=0,∑hf=1.5J/kg习题13附图故13.如本题附图所示,用泵2将储罐1中的有机混合液送至精馏塔3的中部进行分离。已知储罐内液面维持恒定,其上方压力为1.0133105Pa。流体密度为800kg/m3。精馏塔进口处的塔内压力为1.21105Pa,进料口高于储罐内的液面8m,输送管道直径为φ68mm4mm,进料量为20m3/h。料液流经全部管道的能量损失为70J/kg,求泵的有效功率。解:在截面和截面之间列柏努利方程式,得习题14附图14.本题附图所示的贮槽内径D=2m,槽底与内径d0为32mm的钢管相连,槽内无液体补充,其初始液面高度h1为2m(以管子中心线为基准)。液体在管内流动时的全部能量损失可按∑hf=20u2计算,式中的u为液体在管内的平均流速(m/s)。试求当槽内液面下降1m时所需的时间。解:由质量衡算方程,得(1)(2)(3)将式(2),(3)代入式(1)得即(4)在贮槽液面与管出口截面之间列机械能衡算方程即或写成(5)式(4)与式(5)联立,得即i.c.θ=0,h=h1=2m;θ=θ,h=1m积分得动量传递现象与管内流动阻力15.某不可压缩流体在矩形截面的管道中作一维定态层流流动。设管道宽度为b,高度2y0,且b>>y0,流道长度为L,两端压力降为,试根据力的衡算导出(1)剪应力τ随高度y(自中心至任意一点的距离)变化的关系式;(2)通道截面上的速度分布方程;(3)平均流速与最大流速的关系。解:(1)由于b>>y0,可近似认为两板无限宽,故有(1)(2)将牛顿黏性定律代入(1)得上式积分得(2)边界条件为y=0,u=0,代入式(2)中,得C=-因此(3)(3)当y=y0,u=umax故有再将式(3)写成(4)根据ub的定义,得16.不可压缩流体在水平圆管中作一维定态轴向层流流动,试证明(1)与主体流速u相应的速度点出现在离管壁0.293ri处,其中ri为管内半径;(2)剪应力沿径向为直线分布,且在管中心为零。解:(1)(1)当u=ub时,由式(1)得解得由管壁面算起的距离为(2)由对式(1)求导得故(3)在管中心处,r=0,故τ=0。17.流体在圆管内作定态湍流时的速度分布可用如下的经验式表达试计算管内平均流速与最大流速之比u/umax。解:令18.某液体以一定的质量流量在水平直圆管内作湍流流动。若管长及液体物性不变,将管径减至原来的1/2,问因流动阻力而产生的能量损失为原来的多少倍?解:流体在水平光滑直圆管中作湍流流动时=或=/==(式中=2,=()2=4因此==32又由于=(=(=(2×=(0.5)0.25=0.841故=32×0.84=26.9习题19附图19.用泵将2×104kg/h的溶液自反应器送至高位槽(见本题附图)。反应器液面上方保持25.9×103Pa的真空度,高位槽液面上方为大气压。管道为76mm×4mm的钢管,总长为35m,管线上有两个全开的闸阀、一个孔板流量计(局部阻力系数为4)、五个标准弯头。反应器内液面与管路出口的距离为17m。若泵的效率为0.7,求泵的轴功率。(已知溶液的密度为1073kg/m3,黏度为6.310-4Pas。管壁绝对粗糙度可取为0.3mm。)解:在反应器液面1-1,与管路出口内侧截面2-2,间列机械能衡算方程,以截面1-1,为基准水平面,得(1)式中z1=0,z2=17m,ub1≈0p1=-25.9×103Pa(表),p2=0(表)将以上数据代入式(1),并整理得=9.81×17+++=192.0+其中=(++)==1.656×105根据Re与e/d值,查得λ=0.03,并由教材可查得各管件、阀门的当量长度分别为闸阀(全开):0.43×2m=0.86m标准弯头:2.2×5m=11m故=(0.03×+0.5+4)=25.74J/kg于是泵的轴功率为===1.73kW流体输送管路的计算习题20附图20.如本题附图所示,贮槽内水位维持不变。槽的底部与内径为100mm的钢质放水管相连,管路上装有一个闸阀,距管路入口端15m处安有以水银为指示液的U管压差计,其一臂与管道相连,另一臂通大气。压差计连接管内充满了水,测压点与管路出口端之间的直管长度为20m。(1)当闸阀关闭时,测得R=600mm、h=1500mm;当闸阀部分开启时,测得R=400mm、h=1400mm。摩擦系数可取为0.025,管路入口处的局部阻力系数取为0.5。问每小时从管中流出多少水(m3)?(2)当闸阀全开时,U管压差计测压处的压力为多少Pa(表压)。(闸阀全开时Le/d≈15,摩擦系数仍可取0.025。)解:(1)闸阀部分开启时水的流量在贮槽水面1-1,与测压点处截面2-2,间列机械能衡算方程,并通过截面2-2,的中心作基准水平面,得(a)式中p1=0(表)ub2=0,z2=0z1可通过闸阀全关时的数据求取。当闸阀全关时,水静止不动,根据流体静力学基本方程知(b)式中h=1.5m,R=0.6m将已知数据代入式(b)得将以上各值代入式(a),即9.81×6.66=++2.13ub2解得水的流量为(2)闸阀全开时测压点处的压力在截面1-1,与管路出口内侧截面3-3,间列机械能衡算方程,并通过管中心线作基准平面,得(c)式中z1=6.66m,z3=0,ub1=0,p1=p3=将以上数据代入式(c),即9.81×6.66=+4.81ub2解得再在截面1-1,与2-2,间列机械能衡算方程,基平面同前,得(d)式中z1=6.66m,z2=0,ub10,ub2=3.51m/s,p1=0(表压力)将以上数值代入上式,则解得p2=3.30×104Pa(表压)21.10℃的水以500l/min的流量流经一长为300m的水平管,管壁的绝对粗糙度为0.05mm。有6m的压头可供克服流动的摩擦阻力,试求管径的最小尺寸。解:由于是直径均一的水平圆管,故机械能衡算方程简化为上式两端同除以加速度g,得=/g=6m(题给)即==6×9.81J/kg=58.56J/kg(a)将ub代入式(a),并简化得(b)λ与Re及e/d有关,采用试差法,设λ=0.021代入式(b),求出d=0.0904m。下面验算所设的λ值是否正确:10℃水物性由附录查得ρ=1000kg/m3,μ=130.77×10-5Pa由e/d及Re,查得λ=0.021故习题22附图22.如本题附图所示,自水塔将水送至车间,输送管路用mm的钢管,管路总长为190m(包括管件与阀门的当量长度,但不包括进、出口损失)。水塔内水面维持恒定,并高于出水口15m。设水温为12℃,试求管路的输水量(m3/h)。解:在截面和截面之间列柏努利方程式,得(1)采用试差法,代入式(1)得,故假设正确,管路的输水量习题23附图23.本题附图所示为一输水系统,高位槽的水面维持恒定,水分别从BC与BD两支管排出,高位槽液面与两支管出口间的距离均为11。AB管段内径为38m、长为58m;BC支管的内径为32mm、长为12.5m;BD支管的内径为26mm、长为14m,各段管长均包括管件及阀门全开时的当量长度。AB与BC管段的摩擦系数均可取为0.03。试计算(1)当BD支管的阀门关闭时,BC支管的最大排水量为多少(m3/h);(2)当所有阀门全开时,两支管的排水量各为多少(m3/h)?(BD支管的管壁绝对粗糙度,可取为0.15mm,水的密度为1000kg/m3,黏度为。)解:(1)当BD支管的阀门关闭时,BC支管的最大排水量在高位槽水面1-1,与BC支管出口内侧截面C-C,间列机械能衡算方程,并以截面C-C,为基准平面得式中z1=11m,zc=0,ub1≈0,p1=pc故=9.81×11=107.9J/kg(a)(b)(c)(d)(e)将式(e)代入式(b)得(f)将式(f)、(d)代入式(b),得ubC=ub,BC,并以∑hf值代入式(a),解得ub,BC=2.45m/s故VBC=3600××0.0322×2.45m3/h=7.10m3/h(2)当所有阀门全开时,两支管的排水量根据分支管路流动规律,有(a)两支管出口均在同一水平面上,下游截面列于两支管出口外侧,于是上式可简化为将值代入式(a)中,得(b)分支管路的主管与支管的流量关系为VAB=VBC+VBD上式经整理后得(c)在截面1-1,与C-C’间列机械能衡算方程,并以C-C’为基准水平面,得(d)上式中z1=11m,zC=0,ub1≈0,ub,C≈0上式可简化为前已算出因此在式(b)、(c)、(d)中,ub,AB、ub,BC、ub,BD即λ均为未知数,且λ又为ub,BD的函数,可采用试差法求解。设ub,BD=1.45m/s,则查摩擦系数图得λ=0.034。将λ与ub,BD代入式(b)得解得将ub,BC、ub,BD值代入式(c),解得将ub,AB、ub,BC值代入式(d)左侧,即计算结果与式(d)右侧数值基本相符(108.4≈107.9),故ub,BD可以接受,于是两支管的排水量分别为24.在内径为300mm的管道中,用测速管测量管内空气的流量。测量点处的温度为20℃,真空度为500Pa,大气压力为98.66×103Pa。测速管插入管道的中心线处。测压装置为微差压差计,指示液是油和水,其密度分别为835kg/m3和998kg/m3,测得的读数为100mm。试求空气的质量流量(kg/h)。解:查附录得,20℃,101.3kPa时空气的密度为1.203kg/m3,黏度为1.81×10-5Pa,则管中空气的密度为查图1-28,得25.在mm的管路上装有标准孔板流量计,孔板的孔径为16.4mm,管中流动的是20℃的甲苯,采用角接取压法用U管压差计测量孔板两侧的压力差,以水银为指示液,测压连接管中充满甲苯。现测得U管压差计的读数为600mm,试计算管中甲苯的流量为多少(kg/h)?解:已知孔板直径do=16.4mm,管径d1=33mm,则设Re>Reo,由教材查图1-30得Co=0.626,查附录得20℃甲苯的密度为866kg/m3,黏度为0.6×10-3Pa·s。甲苯在孔板处的流速为甲苯的流量为检验Re值,管内流速为原假定正确。习题26附图非牛顿型流体的流动习题26附图26.用泵将容器中的蜂蜜以6.28×10-3m3/s流量送往高位槽中,管路长(包括局部阻力的当量长度)为20m,管径为0.lm,蜂蜜的流动特性服从幂律,密度ρ=1250kg/m3,求泵应提供的能量(J/kg)。解:在截面和截面之间列柏努利方程式,得;
第二章流体输送机械1.用离心油泵将甲地油罐的油品送到乙地油罐。管路情况如本题附图所示。启动泵之前A、C两压力表的读数相等。启动离心泵并将出口阀调至某开度时,输油量为39m3/h,此时泵的压头为38m。已知输油管内径为100mm,摩擦系数为0.02;油品密度为810kg/m3。试求(1)管路特性方程;(2)输油管线的总长度(包括所有局部阻力当量长度)。习题1附图习题1附图解:(1)管路特性方程甲、乙两地油罐液面分别取作1-1’与2-2’截面,以水平管轴线为基准面,在两截面之间列柏努利方程,得到由于启动离心泵之前pA=pC,于是=0则又mh2/m5=2.5×10–2h2/m5则(qe的单位为m3/h)(2)输油管线总长度m/s=1.38m/s于是m=1960m2.用离心泵(转速为2900r/min)进行性能参数测定实验。在某流量下泵入口真空表和出口压力表的读数分别为60kPa和220kPa,两测压口之间垂直距离为0.5m,泵的轴功率为6.7kW。泵吸入管和排出管内径均为80mm,吸入管中流动阻力可表达为(u1为吸入管内水的流速,m/s)。离心泵的安装高度为2.5m,实验是在20℃,98.1kPa的条件下进行。试计算泵的流量、压头和效率。解:(1)泵的流量由水池液面和泵入口真空表所在截面之间列柏努利方程式(池中水面为基准面),得到将有关数据代入上式并整理,得m/s则m3/h=57.61m3/h(2)泵的扬程(3)泵的效率=68%在指定转速下,泵的性能参数为:q=57.61m3/hH=29.04mP=6.7kWη=68%3.对于习题2的实验装置,若分别改变如下参数,试求新操作条件下泵的流量、压头和轴功率(假如泵的效率保持不变)。(1)改送密度为1220kg/m3的果汁(其他性质与水相近);(2)泵的转速降至2610r/min。解:由习题2求得:q=57.61m3/hH=29.04mP=6.7kW(1)改送果汁改送果汁后,q,H不变,P随ρ加大而增加,即(2)降低泵的转速根据比例定律,降低转速后有关参数为4.用离心泵(转速为2900r/min)将20℃的清水以60m3/h的流量送至敞口容器。此流量下吸入管路的压头损失和动压头分别为2.4m和0.61m。规定泵入口的真空度不能大于64kPa。泵的必需气蚀余量为3.5m。试求(1)泵的安装高度(当地大气压为100kPa);(2)若改送55℃的清水,泵的安装高度是否合适。解:(1)泵的安装高度在水池液面和泵入口截面之间列柏努利方程式(水池液面为基准面),得即m(2)输送55℃清水的允许安装高度55℃清水的密度为985.7kg/m3,饱和蒸汽压为15.733kPa则=m=2.31m原安装高度(3.51m)需下降1.5m才能不发生气蚀现象。5.对于习题4的输送任务,若选用3B57型水泵,其操作条件下(55℃清水)的允许吸上真空度为5.3m,试确定离心泵的安装高度。解:为确保泵的安全运行,应以55℃热水为基准确定安装高度。泵的安装高度为2.0m。6.用离心泵将真空精馏塔的釜残液送至常压贮罐。塔底液面上的绝对压力为32.5kPa(即输送温度下溶液的饱和蒸汽压)。已知:吸入管路压头损失为1.46m,泵的必需气蚀余量为2.3m,该泵安装在塔内液面下3.0m处。试核算该泵能否正常操作。解:泵的允许安装高度为式中则泵的允许安装位置应在塔内液面下4.26m处,实际安装高度为–3.0m,故泵在操作时可能发生气蚀现象。为安全运行,离心泵应再下移1.5m。7.在指定转速下,用20℃的清水对离心泵进行性能测试,测得q~H数据如本题附表所示。习题7附表1q(m3/min)00.10.20.30.40.5H/m37.238.03734.531.828.5在实验范围内,摩擦系数变化不大,管路特性方程为(qe的单位为m3/min)试确定此管路中的q、H和P(η=81%)习题7附图qe~HeMq~H解:该题是用作图法确定泵的工作点。由题给实验数据作出q~H曲线。同时计算出对应流量下管路所要求的He,在同一坐标图中作qe~HeMq~H两曲线的交点M即泵在此管路中的工作点,由图读得q=0.455m3/min,H=29.0m,则习题7附图q/(m习题7附图q/(m3/min)习题7附表2qe/(m3/min)00.10.20.30.40.5He/m12.012.815.219.224.832.0注意:在低流量时,q~H曲线出现峰值。8.用离心泵将水库中的清水送至灌溉渠,两液面维持恒差8.8m,管内流动在阻力平方区,管路特性方程为(qe的单位为m3/s)单台泵的特性方程为(q的单位为m3/s)试求泵的流量、压头和有效功率。解:联立管路和泵的特性方程便可求泵的工作点对应的q、H,进而计算Pe。管路特性方程泵的特性方程联立两方程,得到q=4.52×10–3m3/sH=19.42m则W=861W9.对于习题8的管路系统,若用两台规格相同的离心泵(单台泵的特性方程与习题8相同)组合操作,试求可能的最大输水量。解:本题旨在比较离心泵的并联和串联的效果。(1)两台泵的并联解得:q=5.54×10–3m3/s=19.95m3/h(2)两台泵的串联解得:q=5.89×10–3m3/s=21.2m3/h在本题条件下,两台泵串联可获得较大的输水量21.2m3/h。10.采用一台三效单动往复泵,将敞口贮槽中密度为1200kg/m3的粘稠液体送至表压为1.62×103kPa的高位槽中,两容器中液面维持恒差8m,管路系统总压头损失为4m。已知泵的活塞直径为70mm,冲程为225mm,往复次数为200min-1,泵的容积效率和总效率分别为0.96和0.91。试求泵的流量、压头和轴功率。解:(1)往复泵的实际流量m3/min=0.499m3/min(2)泵的扬程m=149.6m(3)泵的轴功率kW=16.08kW11.用离心通风机将50℃、101.3kPa的空气通过内径为600mm,总长105m(包括所有局部阻力当量长度)的水平管道送至某表压为1×104Pa的设备中。空气的输送量为1.5×104m3/h。摩擦系数可取为0.0175。现库房中有一台离心通风机,其性能为:转速1450min-1,风量1.6×104m3/h,风压为1.2×104Pa。试核算该风机是否合用。解:将操作条件的风压和风量来换算库存风机是否合用。Pa=106300Pakg/m3=1.147kg/m3m/s=14.40m/s则Pa=10483PaPa=10967Pa库存风机的风量q=1.6×104m3/h,风压HT=1.2×104Pa均大于管路要求(qe=1.5×104m3/h,HT=10967Pa),故风机合用。12.有一台单动往复压缩机,余隙系数为0.06,气体的入口温度为20℃,绝热压缩指数为1.4,要求压缩比为9,试求(1)单级压缩的容积系数和气体的出口温度;(2)两级压缩的容积系数和第一级气体的出口温度;(3)往复压缩机的压缩极限。解:(1)单级压缩的容积系数和气体的出口温度K=548.9K(2)两级压缩的容积系数和第一级气体出口温度改为两级压缩后,每级的压缩比为则重复上面计算,得到K=401K(3)压缩极限即解得第三章非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2650kg/m3,直径为0.04mm的球形石英颗粒在20℃空气中自由沉降,沉降速度是多少?(2)密度为2650kg/m3,球形度的非球形颗粒在20℃清水中的沉降速度为0.1m/s,颗粒的等体积当量直径是多少?(3)密度为7900kg/m3,直径为6.35mm的钢球在密度为1600kg/m3的液体中沉降150mm所需的时间为7.32s,液体的黏度是多少?解:(1)假设为滞流沉降,则:查附录20℃空气,,所以,核算流型:所以,原假设正确,沉降速度为0.1276m/s。(2)采用摩擦数群法依,,查出:,所以:(3)假设为滞流沉降,得:其中将已知数据代入上式得:核算流型2.用降尘室除去气体中的固体杂质,降尘室长5m,宽5m,高4.2m,固体杂质为球形颗粒,密度为3000kg/m3。气体的处理量为3000(标准)m3/h。试求理论上能完全除去的最小颗粒直径。(1)若操作在20℃下进行,操作条件下的气体密度为1.06kg/m3,黏度为1.8×10-5Pa?s。(2)若操作在420℃下进行,操作条件下的气体密度为0.5kg/m3,黏度为3.3×10-5Pa?s。解:(1)在降尘室内能够完全沉降下来的最小颗粒的沉降速度为:设沉降在斯托克斯区,则:核算流型:原设滞流区正确,能够完全除去的最小颗粒直径为1.985×10-5m。(2)计算过程与(1)相同。完全能够沉降下来的最小颗粒的沉降速度为:设沉降在斯托克斯区,则:核算流型:原设滞流区正确,能够完全除去的最小颗粒直径为4.132×10-5m。3.对2题中的降尘室与含尘气体,在427℃下操作,若需除去的最小颗粒粒径为10μm,试确定降尘室内隔板的间距及层数。解:取隔板间距为h,令则(1)10μm尘粒的沉降速度由(1)式计算h∴层数取18层核算颗粒沉降雷诺数:核算流体流型:4.在双锥分级器内用水对方铅矿与石英两种粒子的混合物进行分离。操作温度下水的密度?=996.9kg/m3,黏度?=0.8973×10-3Pa?s。固体颗粒为棱长0.08~0.7mm的正方体。已知:方铅矿密度?s1=7500kg/m3,石英矿密度?s2=2650kg/m3。 假设粒子在上升水流中作自由沉降,试求(1)欲得纯方铅矿粒,水的上升流速至少应为多少?(2)所得纯方铅矿粒的尺寸范围。 解:(1)水的上升流速为了得到纯方铅矿粒,应使全部石英粒子被溢流带出,因此,水的上升流速应等于或略大于最大石英粒子的自由沉降速度。 对于正方体颗粒,应先算出其当量直径和球形度。设l代表棱长,Vp代表一个颗粒的体积。 颗粒的当量直径为 因此,颗粒的球形度, 用摩擦数群法计算最大石英粒子的沉降速度,即 已知=0.806,由图3-3查得Ret=70,则 所以水的上升流速应取为0.07255m/s或略大于此值。(2)纯方铅矿粒的尺寸范围所得到的纯方铅矿粒中尺寸最小者应是沉降速度恰好等于0.07255m/s的粒子。用摩擦数群法计算该粒子的当量直径:已知=0.806,由图3-3查得Ret=30,则 与此当量直径相对应的正方体棱长为 所得纯方铅矿粒的棱长范围为0.3~0.7mm。5.用标准型旋风分离器处理含尘气体,气体流量为0.4m3/s、黏度为3.6×10-5Pa?s、密度为0.674kg/m3,气体中尘粒的密度为2300kg/m3。若分离器圆筒直径为0.4m,(1)试估算其临界粒径、分割粒径及压力降。(2)现在工艺要求处理量加倍,若维持压力降不变,旋风分离器尺寸需增大为多少?此时临界粒径是多少?(3)若要维持原来的分离效果(临界粒径),应采取什么措施?解:临界直径式中,Ne=5将有关数据代入,得分割粒径为压强降为(2)不变所以,处理量加倍后,若维持压力降不变,旋风分离器尺寸需增大,同时临界粒径也会增大,分离效率降低。(3)若要维持原来的分离效果(临界粒径),可采用两台圆筒直径为0.4m的旋风分离器并联使用。6.在实验室里用面积0.1m2的滤叶对某悬浮液进行恒压过滤实验,操作压力差为67kPa,测得过滤5min后得滤液1L,再过滤5min后,又得滤液0.6L。试求,过滤常数,并写出恒压过滤方程式。解:恒压过滤方程为:由实验数据知:,,将上两组数据代入上式得:解得所以,恒压过滤方程为(m3/m2,s)或(m3,s)7.用10个框的板框过滤机恒压过滤某悬浮液,滤框尺寸为635mm×635mm×25mm。已知操作条件下过滤常数为,,滤饼与滤液体积之比为v=0.06。试求滤框充满滤饼所需时间及所得滤液体积。解:恒压过滤方程为,代入恒压过滤方程得8.在0.04m2的过滤面积上以1×10-4m3/s的速率进行恒速过滤试验,测得过滤100s时,过滤压力差为3×104Pa;过滤600s时,过滤压力差为9×104Pa。滤饼不可压缩。今欲用框内尺寸为635mm×635mm×60mm的板框过滤机处理同一料浆,所用滤布与试验时的相同。过滤开始时,以与试验相同的滤液流速进行恒速过滤,在过滤压强差达到6×104Pa时改为恒压操作。每获得1m3滤液所生成的滤饼体积为0.02m3。试求框内充满滤饼所需的时间。解:第一阶段是恒速过滤,其过滤时间θ与过滤压差之间的关系可表示为:板框过滤机所处理的悬浮液特性及所用滤布均与试验时相同,且过滤速度也一样,因此,上式中a,b值可根据实验测得的两组数据求出:3×104=100a+b9×104=600a+b解得a=120,b=1.8×104即恒速阶段终了时的压力差,故恒速段过滤时间为恒速阶段过滤速度与实验时相同根据方程3-71,解得:,恒压操作阶段过滤压力差为6×104Pa,所以板框过滤机的过滤面积滤饼体积及单位过滤面积上的滤液体积为应用先恒速后恒压过滤方程将K、qe、qR、q的数值代入上式,得:解得9.在实验室用一个每边长0.16m的小型滤框对碳酸钙颗粒在水中的悬浮液进行过滤试验。操作条件下在过滤压力差为275.8kPa,浆料温度为20℃。已知碳酸钙颗粒为球形,密度为2930kg/m3。悬浮液中固体质量分数为0.0723。滤饼不可压缩,每1m3滤饼烘干后的质量为1620kg。实验中测得得到1L滤液需要15.4s,得到2L滤液需要48.8s。试求过滤常数,滤饼的空隙滤ε,滤饼的比阻r及滤饼颗粒的比表面积a。解:根据过滤实验数据求过滤常数已知,;,及代入恒压过滤方程式联立以上两式,解得,滤饼的空隙滤悬浮液的密度以1m3悬浮液为基准求ν滤饼体积,滤液体积∴滤饼不可压缩时,所以,滤饼比阻为颗粒的比表面积10.板框压滤机过滤某种水悬浮液,已知框的长×宽×高为810mm×810mm×42mm,总框数为10,滤饼体积与滤液体积比为?=0.1,过滤10min,得滤液量为1.31m3,再过滤10min,共得滤液量为1.905m3,试求(1)滤框充满滤饼时所需过滤时间;(2)若洗涤与辅助时间共45min,求该装置的生产能力(以得到的滤饼体积计)。解:(1)过滤面积由恒压过滤方程式求过滤常数联立解出,恒压过滤方程式为代入恒压过滤方程式求过滤时间(2)生产能力11.在Pa压力下对硅藻土在水中的悬浮液进行过滤试验,测得过滤常数K=5×10-5m2/s,qe=0.01m3/m2,滤饼体积与滤液体积之比υ=0.08。现拟用有38个框的BMY50/810-25型板框压滤机在Pa压力下过滤上述悬浮液。试求:(1)过滤至滤框内部全部充满滤渣所需的时间;(2)过滤完毕以相当于滤液量1/10的清水洗涤滤饼,求洗涤时间;(3)若每次卸渣、重装等全部辅助操作共需15min,求过滤机的生产能力(m3滤液/h)。解:(1)硅藻土,,可按不可压缩滤饼处理,与无关时,,,,代入恒压过滤方程式求过滤时间(2)洗涤(3)生产能力12.用一小型压滤机对某悬浮液进行过滤试验,操作真空度为400mmHg。测得,,,υ=0.2。现用一台GP5-1.75型转筒真空过滤机在相同压力差下进行生产(过滤机的转鼓直径为1.75m,长度为0.9m,浸没角度为120o),转速为1r/min。已知滤饼不可压缩。试求此过滤机的生产能力及滤饼厚度。解:过滤机回转一周的过滤时间为由恒压过滤方程求此过滤时间可得滤液量解得过滤面积所得滤液转筒转一周的时间为所以转筒真空过滤机的生产能力为转筒转一周所得滤饼体积滤饼厚度第四章液体搅拌1.采用六片平直叶圆盘涡轮式搅拌器搅拌某种黏稠液体。该液体密度ρ=1060kg/m3,黏度μ=42Pa?s。搅拌槽直径D=1.2m,叶轮直径d=0.4m。已测得达到预期搅拌效果要求叶端速度uT=2.65m/s。试求叶轮的转速及搅拌功率。解:根据题给条件,借助图4-8中曲线6进行计算。(1)叶轮转速n=r/s=2.11r/s(2)搅拌功率Re==8.52(层流区)由Re=8.52从图4-8中曲线6读得,Φ=9。用式4-11计算P,即P=Φρn3d5=9×1060×2.113×0.45W=918W或用式4-10计算N,取K1=71则 P=K1μn2d3=71×42×2.112×0.43W=850W2.用例4-1附图中所示的搅拌槽来搅拌固体颗粒在20℃水中的悬浮液。固相密度ρs=1600kg/m3,体积分数xν=0.12。槽内径D=3m,叶轮转速n=1.5r/s。试求搅拌功率P。解:对于悬浮液,用平均密度ρm和黏度μm作为物料的物性参数,采用均相物系搅拌功率的方法进行计算。20℃水的物性参数为ρ=998.2kg/m3,μ=1.005mPa?sρm=ρsxv+(1–xv)ρ=[1600×0.12+(1–0.12)×998.2]kg/m3=1070kg/m3ε==0.1364<1μm=(1+2.5ε)μ=(1+2.5×0.1364)×1.005mPa?s=1.348mPa?sRe===1.19×106(湍流区)查图4-8中的曲线6得到,Φ=PN=6.6则P=Φρn3d5=6.6×1070×1.53×15W=23.83×103W≈24kW3.在习题2的搅拌设备中搅拌密度ρ=880kg/m3,黏度μ=0.66Pa?s的均相混和液,要求叶轮的叶端速度uT不低于5m/s,槽内径D仍为3m。试比较全挡板条件和不安装挡板的搅拌功率。解:借助图4-8中的曲线6和5进行计算。d=D=×3m=1mn===1.59(1)全挡板条件下的搅拌功率Re===2120(过渡区)由Re值查图4-8中的曲线6,得Φ=PN=5.0则P=Φρn3d5=5.0×880×1.593×15=17.7×103W=17.7kW(2)无挡板条件下的搅拌功率用式4-12计算N,式中Φ=1.9,ζ1=1,ζ2=40则P=Φρn3d5FryFr==0.2577y===–0.0582∴P=1.9×880×1.592×13×0.2577–0.0582kW=7.273×103kW≈7.3kW4.在直径D=1.8m的“标准搅拌槽”内搅拌假塑性流体。叶轮转速n=2r/s;液体密度ρ=1070kg/m3,操作条件下液体的表观黏度可用下式计算,即μa=K(kn)m-1式中K—稠度指数,Pa?sm,对该流体,K=50.6Pa?sm;k—系数,量纲为一,本例取为13;m—流性指数,量纲为一,本例取m=0.5;n—叶轮转速,r/s。试求搅拌功率。解:Pa?sRe===77.64由Re值从图4-10查得PN=3.5则P=PNρn3d5=3.5×1070×23×0.65W=2.33×103W=2.33kW5.拟设计一“标准”构形的搅拌设备搅拌某种均相混合液,槽内径为2.4m,混合液密度ρ=1260kg/m3,黏度μ=1.2Pa?s。为了取得最佳搅拌效果,进行三次几何相似系统中的放大试验。实验数据如本例附表1所示。试根据实验数据判断放大准则,并计算生产设备的叶轮转速及搅拌功率。习题5附表1试验模型的结构参数与操作参数试验编号槽径D/mm叶轮直径d/mm转速备注123200400800671352701360675340满意的搅拌效果解:(1)判断放大基准根据试验数据计算各放大基准的相对值列于本题附表2习题5附表2各放大基准的相对值放大准则1号槽2号槽3号槽Re∝nd2P/V∝n3d2Q/H∝d/nuT∝nd6.105×1061.129×10134.93×10-29112012.3×1075.605×10120.2911252.48×1072.865×10120.79491800从上表看出,应以保持叶端速度不变为放大基准。(2)生产设备的搅拌器转速及搅拌功率==4.771m/s同理=4.771m/s及=4.807m/s=由Re值查图4-8中的曲线6,得到Φ=PN=4.5则P=PNρn3d5=4.5×1260×1.9033×0.85=12.8×103W=12.8kW 第五章传热过程基础1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02m2,厚度为0.02m,实验测得电流表读数为0.5A,伏特表读数为100V,两侧表面温度分别为200℃和50℃,试求该材料的导热系数。解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即式中将上述数据代入,可得2.某平壁燃烧炉由一层400mm厚的耐火砖和一层200mm厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500℃,外表面温度为100℃,试求导热的热通量及两砖间的界面温度。设两砖接触良好,已知耐火砖的导热系数为,绝缘砖的导热系数为,。两式中的t可分别取为各层材料的平均温度。解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即(5-32)或(5-32a)式中代入λ1、λ2得解之得则3.外径为159mm的钢管,其外依次包扎A、B两层保温材料,A层保温材料的厚度为50mm,导热系数为0.1W/(m·℃),B层保温材料的厚度为100mm,导热系数为1.0W/(m·℃),设A的内层温度和B的外层温度分别为170℃和40℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少?解:A、B两层互换位置后,热损失为4.直径为mm的钢管用40mm厚的软木包扎,其外又包扎100mm厚的保温灰作为绝热层。现测得钢管外壁面温度为℃,绝热层外表面温度为10℃。软木和保温灰的导热系数分别为℃)和℃),试求每米管长的冷损失量。解:此为两层圆筒壁的热传导问题,则5.在某管壳式换热器中用冷水冷却热空气。换热管为Φ25mm×2.5mm的钢管,其导热系数为45W/(m·℃)。冷却水在管程流动,其对流传热系数为2600W/(m2·℃),热空气在壳程流动,其对流传热系数为52W/(m2·℃)。试求基于管外表面积的总传热系数,以及各分热阻占总热阻的百分数。设污垢热阻可忽略。解:由查得钢的导热系数mmmm壳程对流传热热阻占总热阻的百分数为管程对流传热热阻占总热阻的百分数为管壁热阻占总热阻的百分数为6.在一传热面积为40m2的平板式换热器中,用水冷却某种溶液,两流体呈逆流流动。冷却水的流量为30000kg/h,其温度由22℃升高到36℃。溶液温度由115℃降至55℃。若换热器清洗后,在冷、热流体流量和进口温度不变的情况下,冷却水的出口温度升至40℃,试估算换热器在清洗前壁面两侧的总污垢热阻。假设:(1)两种情况下,冷、热流体的物性可视为不变,水的平均比热容为4.174kJ/(kg·℃);(2)两种情况下,分别相同;(3)忽略壁面热阻和热损失。
解:求清洗前总传热系数K求清洗后传热系数由热量衡算清洗前两侧的总传热热阻7.在一传热面积为25m2的单程管壳式换热器中,用水冷却某种有机溶液。冷却水的流量为28000kg/h,其温度由25℃升至38℃,平均比热容为4.17kJ/(kg·℃)。有机溶液的温度由110℃降至65℃,平均比热容为1.72kJ/(kg·℃)。两流体在换热器中呈逆流流动。设换热器的热损失可忽略,试核算该换热器的总传热系数并计算该有机溶液的处理量。解:kJ/(kg·℃)求有机物110→65水38←2572408.在一单程管壳式换热器中,用水冷却某种有机溶剂。冷却水的流量为10000kg/h,其初始温度为30℃,平均比热容为4.174kJ/(kg·℃)。有机溶剂的流量为14000kg/h,温度由180℃降至120℃,平均比热容为1.72kJ/(kg·℃)。设换热器的总传热系数为500W/(m2·℃),试分别计算逆流和并流时换热器所需的传热面积,设换热器的热损失和污垢热阻可以忽略。解:冷却水的出口温度为逆流时并流时9.在一单程管壳式换热器中,用冷水将常压下的纯苯蒸汽冷凝成饱和液体。已知苯蒸汽的体积流量为1600m3/h,常压下苯的沸点为80.1℃,气化热为394kJ/kg。冷却水的入口温度为20℃,流量为35000kg/h,水的平均比热容为4.17kJ/(kg·℃)。总传热系数为450W/(m2·℃)。设换热器的热损失可忽略,试计算所需的传热面积。解:苯蒸气的密度为解出℃求苯80.1→80.1水31.62048.560.110.在一单壳程、双管程的管壳式换热器中,水在壳程内流动,进口温度为30℃,出口温度为65℃。油在管程流动,进口温度为120℃。出口温度为75℃,试求其传热平均温度差。解:先求逆流时平均温度差油120→75水65305545计算P及R查图5-11(a)得11.某生产过程中需用冷却水将油从105℃冷却至70℃。已知油的流量为6000kg/h,水的初温为22℃,流量为2000kg/h。现有一传热面积为10m2的套管式换热器,问在下列两种流动型式下,换热器能否满足要求:(1)两流体呈逆流流动;(2)两流体呈并流流动。设换热器的总传热系数在两种情况下相同,为300W/(m2·℃);油的平均比热容为1.9kJ/(kg·℃),水的平均比热容为4.17kJ/(kg·℃)。热损失可忽略。解:本题采用法计算(1)逆流时查图得能满足要求(2)并流时查图得不能满足要求12.在一单程管壳式换热器中,管外热水被管内冷水所冷却。已知换热器的传热面积为5m2,总传热系数为1400W/(m2·℃);热水的初温为100℃,流量为5000kg/h;冷水的初温为20℃,流量为10000kg/h。试计算热水和冷水的出口温度及传热量。设水的平均比热容为4.18kJ/(kg·℃),热损失可忽略不计。解:查图得传热量解出℃解出℃13.水以1.5m/s的流速在长为3m、直径为的管内由20℃加热至40℃,试求水与管壁之间的对流传热系数。解:水的定性温度为由附录六查得30时水的物性为ρ=995.7kg/m3,μ=80.07×10-5Pa·s,λ=0.6176,Pr=5.42则(湍流)Re、Pr及值均在式5-59a的应用范围内,故可采用式5-76a近似计算。水被加热,取n=0.4,于是得14.温度为90℃的甲苯以1500kg/h的流量流过直径为mm,弯曲半径为0.6m的蛇管换热器而被冷却至30℃,试求甲苯对蛇管的对流传热系数。解:甲苯的定性温度为由附录查得60时甲苯的物性为ρ=830kg/m3,Cp=1840J/(kg·℃),μ=0.4×10-3Pa·s,λ=0.1205,则(湍流)流体在弯管内流动时,由于受离心力的作用,增大了流体的湍动程度,使对流传热系数较直管内的大,此时可用下式计算对流传热系数,即式中—弯管中的对流传热系数,;—直管中的对流传热系数,;di—管内径,m;R—管子的弯曲半径,m。15.压力为101.3kPa,温度为20℃的空气以60m3/h的流量流过直径为,长度为3m的套管换热器管内而被加热至80℃,试求管壁对空气的对流传热系数。解:空气的定性温度为由附录五查得50?C时空气的物性为ρ=1.093kg/m3,Cp=1005J/(kg·℃),μ=1.96×10-5Pa·s,λ=0.0283,Pr=0.698则(湍流)16.常压空气在装有圆缺形挡板的列管换热器壳程流过。已知管子尺寸为mm,正方形排列,中心距为51mm,挡板距离为1.45m,换热器外壳内径为m,空气流量为,平均温度为140℃,试求空气的对流传热系数。解:由附录五查得?C时空气的物性为ρ=0.854kg/m3,Cp=1013J/(kg·℃),μ=2.37×10-5Pa·s,λ=0.0349,Pr=0.694采用凯恩(Kern)法,即(5-63)或(5-63a)传热当量直径可根据管子排列情况进行计算。管子为正方形排列,则式中t—相邻两管的中心距,m;Do—管外径,m。代入和do得式5-63及式5-63a中的流速u可根据流体流过管间最大截面积A计算,即式中z—两挡板间的距离,m;D—换热器的外壳内径,m。代入z、D、t和do得上述式中的对气体可取为1.0。17.将长和宽均为0.4m的垂直平板置于常压的饱和水蒸气中,板面温度为98℃,试计算平板与蒸汽之间的传热速率及蒸汽冷凝速率。解:水的定性温度为由附录六查得99?C时水的物性为ρ=958.5kg/m3,Cp=4220J/(kg·℃),μ=28.41×10-5Pa·s,λ=0.683oC),Pr=1.762由附录八查得100?C时饱和蒸气的物性为kJ/kg,kg/m对于此类问题,由于流型未知,故需迭代求解。首先假定冷凝液膜为层流,由式5-135得核算冷凝液流型,由对流传热速率方程计算传热速率,即冷凝液的质量流率为单位长度润湿周边上的凝液质量流率为则故假定冷凝液膜为层流是正确的。18.常压水蒸气在一mm,长为3m,水平放置的钢管外冷凝。钢管外壁的温度为96℃,试计算水蒸气冷凝时的对流传热系数。若此钢管改为垂直放置,其对流传热系数又为多少?由此说明工业上的冷凝器应如何放置?解:由附录查得,常压水蒸气的温度为100℃。定性温度由附录查得在98℃下,水的物性为:水平放置垂直放置通过上述计算可知,工业上的冷凝器应水平放置。19.两平行的大平板,在空气中相距10mm,一平板的黑度为0.1,温度为400K;另一平板的黑度为0.05,温度为300K。若将第一板加涂层,使其黑度为0.025,试计算由此引起的传热通量改变的百分数。假设两板间对流传热可以忽略。解:第一板加涂层前因是两平行的大平板,则;;于是第一板加涂层后空气导热的热通量,查得时,空气的导热系数加涂层前后传热通量减少的百分率为20.用压力为300kPa(绝对压力)的饱和水蒸气将20℃的水预热至80℃,水在mm水平放置的钢管内以0.6m/s的速度流过。设水蒸气冷凝的对流传热系数为5000W/(m2·℃),水侧的污垢热阻为6×10-4m2·℃/W,蒸汽侧污垢热阻和管壁热阻可忽略不计,试求(1)换热器的总传热系数;(2)设操作半年后,由于水垢积累,换热能力下降,出口水温只能升至70℃,试求此时的总传热系数及水侧的污垢热阻。解:查附录得,300kPa的饱和水蒸气温度为133.3℃水的定性温度为(1)在50℃下,水的物理性质如下:应用公式5-58a进行计算(2)(a)(b)(b)式÷(a)式,得21.在一套管换热器中,用冷却水将4500kg/h的苯由80℃冷却至35℃,;冷却水在mm的内管中流动,其进、出口温度分别为17℃和47℃。已知水和苯的对流传热系数分别为850W/(m2·℃)和1700W/(m2·℃),试求所需的管长和冷却水的消耗量。解:苯的定性温度时苯的定压热容为1.824kJ/(kg·℃)水的定性温度时水的定压热容为4.176kJ/(kg·℃)冷却水的消耗量管长22.某炼油厂拟采用管壳式换热器将柴油从176℃冷却至65℃。柴油的流量为9800kg/h。冷却介质采用35℃的循环水。要求换热器的管程和壳程压降不大于30kPa,试选择适宜型号的管壳式换热器。解:略第七章传质与分离过程概论解:先计算进、出塔气体中氨的摩尔分数和。
进、出塔气体中氨的
由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。在直径为0.012m、长度为0.35m的圆管中,CO气体通过N2进行稳态分子扩散。管内N2的温度为373K,总压为101.3kPa,管两端CO的分压分别为70.0kPa和7.0kPa,试计算CO的扩散通量。在总压为101.3kPa,温度为273K下,组分A自气相主体通过厚度为0.015m的气膜扩散到催化剂表面,发生瞬态化学反应。生成的气体B离开催化剂表面通过气膜向气相主体扩散。已知气膜的气相主体一侧组分A的分压为22.5kPa,组分A在组分B中的扩散系数为1.85×10-5m2/s。试计算组分A和组分B的传质通量和。在温度为278K的条件下,令某有机溶剂与氨水接触,该有机溶剂与水不互溶处溶液的密度为997.0kg/m3。278K时氨在水中的扩散系数为1.24×10–9m2/s。试计算稳态扩散下氨的传质通量。
氨,由式7-41式(7-43)估算二氧化硫在水中的扩散系数。由式(7-43)有关公式计算得空气与萘板间的对流传质系数为0.0165m/s。试计算萘板厚度减薄5%所需要的时间。为空气主体中萘的浓度,因空气流量很大,故可认为为萘板表面处气相中萘的饱和浓度,可通过萘的饱和蒸气压计算,即设萘板表面积为S,由于扩散所减薄的厚度为b,物料衡算可得 第8章2.在温度为25℃及总压为101.3kPa的条件下,使含二氧化碳为3.0%()的混合空气与二氧化碳二氧化碳二氧化碳解:水溶液中CO2的浓度为对于稀水溶液,总浓度为kmol/m3水溶液中CO2的摩尔分数为由kPa气相中CO2的分压为kPa<故CO2必由液相传递到气相,进行解吸。以CO2的分压表示的总传质推动力为kPa在总压为110.5kPa的条件下,采膜吸收系数kL=1.55×10-4m/s。假设操作条件下平衡关系服从亨利定律,溶解度系数H=0.725kmol/(m3kPa)。(1)试计算以、表示的总推动力和相应的总吸收系数;(2)试分析该过程的控制因素。解:(1)以气相分压差表示的总推动力为kPa其对应的总吸收系数为kmol/(m2skPa)以液相组成差表示的总推动力为其对应的总吸收系数为(2)吸收过程的控制因素气膜阻力占总阻力的百分数为气膜阻力占总阻力的绝大部分,故该吸收过程为气膜控制。在某填料塔中用清水逆流吸收混于空气中的甲醇蒸汽。操作压力为105.0kPa,操作温度为25℃。在操作条件下平衡关系符合亨利定律,甲醇在水中的溶解度系数为2.126kmol/(m3kPa)。测得塔内某截面处甲醇的气相分压为7.5kPa,液相组成为2.85kmol/m3,液膜吸收系数kL=2.12×10-5m/s,气相总吸收系数KG=1.206×10-5kmol/(m2skPa)。求该截面处(1)膜吸收系数kG、kx及ky;(2)总吸收系数KL、KX及KY;(3)吸收速率。解:(1)以纯水的密度代替稀甲醇水溶液的密度,25℃kg/m3溶液的总浓度为kmol/m35.知混合气进塔和出塔的组成分别为y1=0.04、y2=0.002。假设操作条件下平衡关系服从亨利定律,亨利系数为4.13×103kPa,吸收剂用量为最小用量的1.45倍。(1)试计算吸收液的组成;(2)若操作压力提高到1013kPa而其他条件不变,再求吸收液的组成。解:(1)吸收剂为清水,所以所以操作时的液气比为吸收液的组成为(2)6.数为0.0562kmol/(m3s)。若吸收液中二氧化硫的摩尔比为饱和摩尔比的76%,要求回收率为98%。求水的用量及所需的填料层高度。解:惰性水的用量求填料层高度7.操作条件下的气液平衡关系为;(1)填料塔的吸收率;(2)填料塔的直径。解:(1)惰性对于纯溶剂吸收依题意(2)由填料塔的直径为8.在101.3kPa及20℃的条件下,用清水在填料塔内逆流吸收混于空气中的氨气。已知混合气的质量流速G为600kg/(m2h),气相进、出塔的摩尔分数分别为0.05、0.000526,水的质量流速W为(1)操作压力提高一倍;(2)气体流速增加一倍;(3)液体流速增加一倍,试分别计算填料层高度应如何变化,才能保持尾气组成不变。解:首先计算操作条件变化前的传质单元高度和传质单元数操作条件下,混合气的平均摩尔质量为m(1)若气相出塔组成不变,则液相出塔组成也不变。所以mmm即所需填料层高度比原来减少1.801m。(2)若保持气相出塔组成不变,则液相出塔组成要加倍,即故mmm即所需填料层高度要比原来增加4.910m。(3)W对KGa无影响,即对KGa无影响,所以传质单元高度不变,即m即所需填料层高度比原来减少0.609m。9.某制药厂现有一直径为1.2m,填料层高度为3m的吸收塔,用纯溶剂吸收某气体混合物中的溶质组质的回收率不低于95%;操作条件下气液平衡关系为Y=2.2X;溶剂用量为最小用量的1.5倍;气相总吸收系数为0.35kmol/(m2h)。填料的有效比表面积近似取为填料比表面积的90(1)出塔的液相组成;(2)所用填料的总比表面积和等板高度。解:(1)惰性(2)m由填料的有效比表面积为填料的总比表面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论