大地测量学基础课件+++_第1页
大地测量学基础课件+++_第2页
大地测量学基础课件+++_第3页
大地测量学基础课件+++_第4页
大地测量学基础课件+++_第5页
已阅读5页,还剩564页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大地测量学基础1最新课件

第一章绪论2最新课件定义:大地测量学是为人类活动提供空间信息的科学,着重研究地球的几何特征(形状和大小)和基本物理特性(重力场)及其变化。性质:地球科学的一个分支,是一门地球信息科学,既是基础科学,又是应用科学任务:测量和描绘地球并监测其变化,为人类活动提供关于地球的空间信息;研究宇宙空间其它星球的状态。经典大地测量学:视地球为不变刚体,均匀旋转球体或椭球体,在一定范围内测绘地球和研究其形状、大小及外部重力场。一、大地测量学的定义3最新课件现代大地测量学:以空间大地测量学为主要标志,研究地球及外部宇宙空间。与经典大地测量学相比,在研究方法、手段方面有显著不同。主要表现在人造卫星、空间探测器、计算机、通讯技术等先进技术的应用。4最新课件1、是国民经济建设和社会发展基础先行性的重要保证。确定地球的形状、大小重力场参数;统一全国坐标框架,建立国家和精密城市控制网,精确测定控制点的坐标,为经济建设服务国民经济建设需要地形图及相关资料,测绘地形图需要建立控制网,建立控制网需要建立坐标框架,建立坐标框架须知道地球的形状、大小及重力参数。而这些方面正是大地测量学所研究的内容。二、大地测量学的地位和作用5最新课件

2、在防灾、减灾、救灾及环境保护、监测、评价中的作用1).建立大地形变监测系统,为地震预报提供有关资料;2).监测泥石流、山体滑坡、雪崩、森林火灾、洪水等灾害,并为灾后评估提供资料;3).监测海水面的变化;4).为灾难事件救援提供快速定位;如空难、海难、交通事故;5).环境监测,如沙漠,森林,土地利用情况等;

这些监测一般是利用GPS、遥感卫星、VLBI、激光测卫(SLR)等技术,必须要知道地球的形状大小、重力场模型、地心坐标等。6最新课件3、是发展空间技术和国防建设的重要保障1).为卫星、导弹、航天飞机及其它宇宙探测器提供精确的地球参考框架和全球重力场模型;2).为战争提供军事测绘保障,超前储备保障,动态实时保障。如提供战区电子地图、数字影像图,打击目标的精确三维坐标。7最新课件4、在当代地球科学研究中有重要地位1).建立与维持高精度的坐标框架和区域性与全球的三维大地网,长期监测网点随时间的变化;2).监测和分析各种地球动力学现象;提供有关地球动力(地壳板块运动)过程中时空度量上的定量定性信息;3).测定地球形状和外部重力场的精细结构及其随时间的变化,进一步精化地球重力场模型;4).是测绘科学的各分支学科的基础科学,极大地影响着测绘科学的发展。8最新课件1、测量学的两个分支普通测量学:研究小范围的地球表面,认为该范围的地球表面是平面,且铅垂线彼此平行。大地测量学:研究全球或大范围的地球,认为铅垂线彼此不平行,研究地球的形状、大小及重力场。

三、大地测量学的基本体系9最新课件现代大地测量(三个基本分支)2、大地测量学的基本体系1)、几何大地测量学:即天文大地测量学基本任务确定地球形状、大小,地面点的几何位置主要内容国家大地测量控制网建立的理论、方法,精密测角、测距、测水准;地球椭球数学性质,椭球面上的测量计算,椭球数学投影,地球椭球几何参数的数学模型等10最新课件2)、物理大地测量学(理论大地测量学)基本任务:用物理方法(重力测量)确定地球形状及其外部重力场。主要内容:位理论,地球重和场,重力测量及其归算,推球地球形状及外部重力场的理论与方法。3)、空间大地测量学以人造地球卫星及其它空间探测器为代表的空间大地测量的理论、技术与方法。11最新课件大地测量学还可进一步应用大地测量学:以建立国家大地测量控制网为中心内容椭球大地测量学:坐标系建立、地球椭球性质、投影数学变换大地天文测量学:测量天文经度、纬度及天文方位角大地重力测量学:重力场、重力测量方法海洋大地测量学:地球动力学:卫星大地测量学:大地测量数据处理学:12最新课件3、现代在地测量的特征1)、测量范围大,范围从地区、全球乃至宇宙空间;2)、研究对象和范围不断深入、全面和精细,从静态测量发展到动态测量,从地球表面测绘发展到地球内部构造及动力过程的研究;3)、观测精度高;4)、观测周期短。13最新课件4、大地测量的基本内容1)、确定地球形状、外部重力场及其变化;建立大地测量坐标系;研究地壳形变,极移和海洋水面地形用其变化2)、研究月球及太阳系行星的形状及重力场3)、建立和维护国家和全球天文大地水平控制网、精密水准网及海洋大地控制网4)、研究为获得高精度测量成果的仪器和方法5)、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算6)、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理理论方法,测量数据库的建立及应用。14最新课件四、大地测量学的发展简史1、第一阶段:地球圆球阶段:将地球看成是圆球进行测量其大小(半径)公元前六世纪,毕达哥拉斯最先提出地球圆球说。首次地球半径测量:公元前三世纪,亚历山大学者埃拉托色尼用子午圈弧长测量法来估算地球半径,与现代数据相比,误差约100Km.亚历山大城赛尼城φφSR15最新课件最早一次对地球大小的实测:我国唐代张遂指导进行。得出子午线上纬度差一度,地面相距约132Km,与现代值110.95Km相比,误差约21Km。公元827年,阿拉伯人阿尔曼孟通过弧长测量,推算出纬度35°处的1°子午线弧长等于111.8Km,比正确值110.95Km只大1%16最新课件2、第二阶段:地球椭球阶段:最先由牛顿提出在此阶段,理论方面英国的牛顿:万有引力定律,地球椭球学说.荷兰的斯涅耳:三角测量法德国的开普勒:行星运动三大定律荷兰的惠更斯:摆测重力原理法国的勒让德:最小二乘法,重力位函数法国的克莱罗:克莱罗定律英国的普拉特和艾黎:地壳均衡学说另外此阶段还进行了大量的实测工作。从理论和实际上推算地球椭球参数,确定地球形状大小。17最新课件此阶段在几何大地测量方面取得的成果1)、长度单位的建立:法国利用弧度测量的结果,取其子午圈弧长的四千万分之一为长度单位,称为1米.2)、最小二乘法的提出:法国勒让德于1806年发表,其实17岁的高斯1794已应用了该理论。3)、椭球大地测量学的形成:解决了椭球数学性质,椭球面上测量计算及正形投影方法4)、弧度测量大规模展开:以英、法、西班牙、德、俄、美为代表。5)、推算了不同的地球椭球参数:贝赛尔椭球参数:克拉克椭球参数:18最新课件此阶段物理大地测量取得的成就1)、克莱罗定理的提出:假设地球是由许多密度不同的均匀物质层圈组成的椭球体,且层密度按一定法则由地心向外逐层减少。得出:19最新课件2)、重力位函数的提出:位函数性质:在一个参考坐标系中,引力位对被吸引点三个坐标方向的一阶导数等于引力在该方向上的分力。意义:可借助等位面研究地球形状,可借助重力位的一阶导数研究重力场。3)、地壳均衡学说的提出:根据地壳均衡学说导出均衡重力异常以用于重力归算。4)、重力测量有了进展。20最新课件3、第三阶段:大地水准面阶段此阶段几何大地测量取得的成就:1、天文大地网的布设有了重大发展三大网:印度、美国、苏联2、较高精度仪器的使用,如因瓦基线尺,因瓦水准尺,带测微器的水准仪;天文大地测量与重力大地测量的结合。此阶段物理大地测量取得的成就1、大地测量边值问题理论的提出。用已知的重力和重力位求边界面和外部重力场的问题克莱罗:以椭球面为边界解决边值问题斯托克司:以大地水准面为边界面解决边值问题莫洛金斯基:以地球表面为边界,直接用地面重力值确定地球形状与外部重力场21最新课件2、新的椭球参数的提出。赫尔默特椭球,海福特椭球,克拉索夫斯基椭球3、测量数据处理与测量平差理论与实践也取得重大进展22最新课件4、第四阶段:现代大地测量新时期1)、以空间测量技术为代表:电磁波测距、人造地球卫星定位系统、甚长基线干涉测量等技术的应用。2)、月球和行星大地测量学的形成:空间探测器、卫星、空间飞行器等技术的应用。3)、高精度的天文大地网、重力网的建立。4)、大地控制网优化设计理论和最小二乘配置法的提出与应用。大地控制网优化标准:精度、可靠性与经费广义测量平差理论的形成。23最新课件五、大地测量的展望1、

全球定位系统、激光测卫(SLR)、甚长基线干涉测量(VLBI)是主导本学科发展的主要空间大地测量技术。1)、全球定位系统:美国的GPS:24颗卫星,有限制使用、三个民用载波俄国的GLONASS:24颗卫星,精码P码不保密欧洲在建的伽俐略系统:不保密。中国的北斗星系统T1T2s1s2s3s424最新课件2)、激光测卫SLR(SatelliteLaserRanging)测定激光由地面站发射经卫星反射到地面站接收的时间间隔

,计算观测时刻地面到卫星的距离.人卫激光仪25最新课件精度最高的绝对定位技术。全球地心参考框架、地球自转参数、全球重力场低阶模型、精密定轨等方面有重要作用。地基:在卫星上安置反光镜,地面上安激光测距仪,对卫星测距。天基:在卫星上安置激光测距仪,地面上安反光镜,对地测距3)、惯性测量系统利用惯性力学原理,测定地面点三维坐标、重力异常和垂线偏差。26最新课件4)、甚长基线干涉测量VLBI(VeryLongBaselineInterferometry)在相距几千公里甚长基线两端,用射电望远镜同时接收来自宇宙外射电源的射电信号,根据干涉原理,直接测定基线长和方向的一种空间测量技术。观测对象:河外类星体观测仪器:射电望远镜观测量:射电源到同步观测的射电望远镜的时间差解算量:同步观测的射电望远镜之间的坐标差等射电源电磁波射电望远镜射电望远镜27最新课件2、空间大地网是实现本学科科学技术任务的技术方案1)、用卫星测量、激光测卫和甚长基线干涉测量等空间大地测量技术建立空间大地控制网,是确定地球基本参数及重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器的发展的地面基准等科技任务的基本技术方案。2)、我国及许多国家正在建立或已建立GPS大地控制网3)、国际地球参考框架IFRF(InternationalTerrestrialReferrenceFrame)是基于VLBI、SLR、GPS等空间技术建立的。28最新课件3、精化地球重力场模型是大地测量滨重要发展目标两种手段:1)、利用重力测量技术2)、利用卫星大地测量技术,如卫星测高,低轨卫星地球重力场低阶模型已有很高精度建立高阶地球重力场模型,精化现有360阶模型,使全球大地水准面精度达5~10cm美国:360阶中国:180阶。29最新课件卫星测高30最新课件装有激光发射棱镜的低轨卫星31最新课件第二章坐标系统和时间系统32最新课件一、地球的运转1、地球公转:围绕太阳的旋转公转一周的周期为一恒星年,为365.256354个太阳日地球连续两次经过春分点所需的时间为一回归年,长度为365.24219个太阳日。与银河系一起在宇宙中运动;与太阳一起在银河系中旋转;地球公转;地球自转远日点近日点地球春分点秋分点2)、满足开普勒三大行星定律

①、行星运行的轨道是一个椭圆,而该椭圆的一个焦点与太阳的质心相重合

②、行星质心与太阳质心间的距离向量,在相同的时间内所扫过的面积相等

③、行星运动周期的平方与轨道椭圆长半径的立方之比为一常量1)、黄道:太阳公转的轨道,是一椭圆。但由于其它星球的影响,使轨道产生摄动,并不严格的椭圆。33最新课件黄赤交角23°27′黄道与赤道34最新课件2、地球自转:绕其自身旋转轴的转动。周其为24小时。由于日月等天体的影响及地球自身的不规则,地球自转轴方向是不断变化的。1)、岁差:在日月引力和其它天体引力对地球隆起部分的作用下,地球在绕太阳运行时,自转轴的方向不再保持不变,从而使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。在岁差的影响下,地球自转轴在空间绕北黄极产生缓慢的旋转(从北天极上方观察为顺时针方向),形成一个倒圆锥体,其锥角等于黄赤交角23°27′。

岁差的周期约为25800年。岁差使春分点每年西移50.3″。35最新课件2)、章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极产生旋转,大致成椭圆形轨迹,其长半径约为9.2″,周期约为18.6年。这种现象称为章动。真赤道:某一时刻的赤道.(由于岁差和章动的影响,每一时刻赤道的位置不同)平赤道:只有岁差影响时的赤道.黄经章动:章动引起的黄经变化.即平春分点与真春点的角距.交角章动:章动引起的黄赤交角的变化.36最新课件3)、极移:地球瞬时自转轴在地球上随时间而变,称为地极移动,简称极移。瞬时极:与观测瞬间相对应的自转轴所处的位置,称为该瞬时的地球极轴,相应的极点称为瞬时极。平极:某段时间内地极的平均位置。国际协定原点CIO:国际天文联合会IAU和国际大地测量与物理联合会IUGG采用国际上5个纬度服务站的资料,以1900.00至1905.05年地球自转轴瞬时位置的平均位置作为地球的固定极称为国际协定原点CIO。也称协议地球极CTP。国际时间局BIH的CIO有:BIH1968.0,BIH1979.0,BIH1984.0地极坐标系:以CIO为原点,零子午线方向为X轴,以零子午线以西为了描述90°子午线为y轴。用来描述极移规律。平春分点:相应于平极的春分点。37最新课件38最新课件二、时间系统时刻:某一时间点,也就是发生某一现象的瞬间,也称历元。时间间隔:两个时刻之间的时间差。时间系统的要素:时间原点、度量单位(时间尺度)。任何一个周期运动满足如下要求方可作为计量时间的方法:a.运动是连续的;b.周期有足够的稳定性;c.运动是可观测的。在实际中有多种时间系统。39最新课件1、恒星时ST定义:以春分点为参考点,由它的周日视运动所确定的时间称为恒星时。计量时间单位:恒星日、恒星小时、恒星分、恒星秒;恒星日:春分点连续两次经过同一子午圈上中天的时间间隔。一恒星日=24恒星时=1440恒星分=86400恒星秒分类:真恒星时和平恒星时。40最新课件

其中,Δψ为黄经章动,ε黄赤交角,T为标准历元J2000.0到计算历元之间的儒略世纪数儒略历:是公元前罗马皇帝儒略·凯撤所实行的一种历法。儒略日(JD)是从公元前4713年儒略历1月1日格林尼治平正午起算的连续天数。一个儒略世纪有36525个儒略日。标准历元J2000.0为2451545.0儒略日.简化儒略日(MJD)等于儒略日减去2400000.5日.1900年3月到2100年2月儒略日计算公式:JD=367×Y-7×[Y+(M+9)/12]/4+275×M/9+D+1721014其中Y,M,D表示年月日,/表示整除.2.平太阳时MT真太阳时:以真太阳作为参考点,由它的周日视运动所确定的时间平太阳时:以平太阳作为参考点,由它的周日视运动所确定的时间。计量时间单位:平太阳日、平太阳小时、平太阳分、平太阳秒;平太阳日:平太阳连续两次经过同一子午圈的时间间隔.一回归年=365.24219879平太阳日一平太阳日=24平太阳小时=1440平太阳分=86400平太阳秒。平太阳时与日常生活中使用的时间系统是一致的,通常钟表所指示的时刻正是平太阳时。41最新课件3.世界时UT定义:以平子午夜为零时起算的格林尼治平太阳时定义为世界时UT。UT0:未经任何改正的世界时UT1:经过极移改正的世界时UT2:在UT1的基础上经过地球自转速度的季节性改正的世界时42最新课件5.协调世界时UTC协调世界时UTC:由于地球自转速度有变慢的趋势,为了避免世界时和原子时产生过大偏差而采用的一种以原子时秒长为基础,在时刻上尽量接近世界时的一种折衷的时间系统。当二者之差超过±0.9秒时,便在协调世界时UTC加入一闰秒。闰秒一般在12月31日或6月30日加入。协调世界时UTC的秒长与原子时秒长一致。协调时与国际原子时之间的关系,如下式所示:IAT=UTC+1s×n式中n为调整参数4.原子时AT原子时:是以物质内部原子运动的特征为基础建立的时间系统。原子时的尺度标准:(在海平面实现的原子秒)国际制秒(SI)。原子秒:在零磁场下,铯-133原子基态两个超精细能级间跃迁辐射9192631770周所持续的时间。国际原子时(TAI)的原点由下式确定:AT=UT2-0.0039(s)43最新课件6.GPS时间系统GPST

基于美国海军观测实验室维持的原子时的时间系统。GPST属于原子时系统,它的秒长即为原子时秒长,GPST的原点与国际原子时IAT相差19s。有关系式:IAT-GPST=19(s)在1980年1月6日,GPST与UTC相等,它们的关系为:GPST=UTC+nGPS时间系统与各种时间系统的关系见图所示:44最新课件7、历书时(ET)与力学时(DT)历书时(ET):以地球公转运动为基准的时间系统.起始历元为1900年1月12时.秒长为1900年1月12时整回归年长度的1/31556925.9747.力学时(DT):天体运动力学理论建立的运动方程所采用的时间参数.太阳系质心力学时(TDB):相对于太阳系质心的运动方程所采用的时间参数.地球质心力学时(TDT):相对于太阳系质心的运动方程所采用的时间参数.力学时(DT)所采用的基本单位是国际制秒(SI),与原子时的尺度一致.45最新课件三、坐标系统1).大地基准(GeodeticDatum):地球椭球1、基本概念a).椭球参数:长半径和扁率b).椭球定向:椭球旋转轴平行于地球旋转轴,椭球起始子午面平行于地球起始子午面.c).椭球定位:确定椭球中心与地球中心的相对位置.46最新课件2)、天球:以地球质心为中心以无穷大为半径的假想球体。黄赤交角23°27′天轴,天极,天球赤道,天球赤道面,天球子午面,天球子午圈,时圈,黄道,黄极,春分点。47最新课件3)、大地测量参考系(GeodeticReferenceSystem)①、坐标参考系统:天球坐标系地球坐标系点的坐标可用(x,y,z)表示,也可用(L,B,H)表示。XYZoP春分点黄道天球赤道天球坐标系地球坐标系XYZoP地球赤道首子午线LBB48最新课件②、高程参考系统:正高:以大地水准面为参考面PH正HN正常高:以似大地水准为参考面49最新课件③、重力参考系统:重力观测的参考系统。4)、大地测量的参考框架(GeodeticReference

Frame)①、坐标参考框架:具体实现:国家平面控制网,GPS网②、高程参考框架:具体实现:国家高程控制网(水准网)③、重力参考框架:具体实现:国家重力基本(控制)网50最新课件5)、椭球的定位和定向①、椭球定位:确定椭球中心的位置。地心定位:椭球面与大地水准面全球最佳符合。椭球中心与地球质心一致或最为接近。局部定位:椭球面与大地水准面局部最佳符合。②、椭球定向:确定旋转轴和起始子午面的方向。a.椭球短轴平行于地球旋转轴;b.大地起始子午面平行于天文起始子午面.③、参考椭球:具有确定参数(a,α),经过局部定位和定向的地球椭球。④、总地球椭球:具有确定参数(a,α),经过地心定位和定向,与全球大地水准面最为密合的地球椭球。51最新课件①惯性坐标系(CIS):在空间不动或做匀速直线运动的坐标系.②协议天球坐标系:以某一约定时刻t0作为参考历元,把该时刻对应的瞬时自转轴经岁差和章动改正后作为Z轴,以对应的春分点为X轴的指向点,以XOZ的垂直方向为Y轴方向建立的天球坐标系。是一种近似的惯性坐标系。XYZoP春分点黄道天球赤道③瞬时平天球坐标系:以某一瞬时平天球赤道和对应的春分点为依据。④瞬时真天球坐标系:以某一瞬时北天极和对应的真春分点为依据。2、惯性坐标系(CIS)与协议天球坐标系目前采用的协议天球坐标系是以标准历元J2000.0(2000年1月1.5日)的平赤道和平春分点为依据的。1)、惯性坐标系(CIS)与协议天球坐标系52最新课件2)、协议天球坐标系转换到瞬时平天球坐标系

二者的差异是由于岁差引起的,可经坐标系的旋转来进行转换。P0Pir0ri标准历元平赤道瞬时平赤道ZYXZYXθAζAzA其中ZA,θA,ζA为岁差参数53最新课件3)、瞬时平天球坐标系转换到瞬时天球坐标系二者的差异是由于岁差引起的,可经坐标系的旋转来进行转换。其中ε,Δε,ΔΨ为黄赤交角,交章动,黄经章动黄道平赤道真赤道平春分点真春分点ZYXZYX进而有:54最新课件3、地固坐标系地固坐标系:原点O与地心(参心)重合,Z轴指向地球北极,X轴指向地球赤道面与格林尼治子午圈的交点,Y轴在赤道平面里与XOZ构成右手坐标系。XYZoP地球赤道首子午线LBB地心坐标系:以总椭球基准为参心坐标系:以参考椭球基准为协议地球坐标系(CTS):以协议地极CTP为Z轴方向。大多采用CIO为Z轴指向点。以对应赤道面与起始子午圈的交点为X轴指向.瞬时地球坐标系:以瞬时极为Z轴方向。55最新课件1)、协议地球坐标系与瞬时地球坐标系之间的转换0ZCTSYCTSXCTSZt

YtXt协议赤道瞬时赤道格林尼治平子午线xpypCTP仅取至一次项有56最新课件2)、协议地球坐标系与协议天球坐标系之间的转换春分点起始子午线赤道GASTxyzXYZ①瞬时地球坐标系与瞬时天球坐标系之间的转换②协议地球坐标系与协议天球坐标系之间的转换57最新课件3)、参心坐标系①、建立参心坐标系的工作a.确定椭球的几何参数(长半径a和扁率α)b.椭球定位c.椐球定向平行条件d.建立大地原点一般采用国际椭球参数。(X0,Y0,Z0)如图建立两个坐标系二者的关系可用下面参数表示:三个平移参数(X0,Y0,Z0)三个旋转参数εX,εy,εZ根据椭球定向平行条件有:εX=0εy=0εZ=058最新课件②、大地原点和大地起算数据在地面上选定某一适宜的点K作为大地原点,观测其天文经度λK,天文纬度φK,正高H正K,至某相邻点的天文方位角αK,然后再换算成大地经度LK,大地纬度BK,大地方位角AK,大地高HK。

LK,BK,AK称为大地起算数据,大地原点又称大地起算点。根据广义垂线偏差公式和广义拉普拉斯方程有:59最新课件其中:ξK-大地原点垂线偏差子午分量

ηK-大地原点垂线偏差子午分量

NK-大地水准面差距顾及εX=0,εy=0,εZ=0,有:60最新课件③、参考椭球的定位和定向a.单点定位:令大地原点的椭球法线与铅垂线重合,椭球面和大地水准面相切。则:61最新课件b.多点定位:在全国范围内观测许多点的天文经度λ,天文纬度φ,天文方位角α(这样的点称为拉普拉斯点)。利用这些观测成果和已有的椭球参数,根据最佳拟合条件ΣN2=min(或Σζ2=min),采用最小二乘原理,求出椭球定位参数ΔX0,ΔY0,ΔZ0,旋转参数εX,εy,εZ,椭球几何参数的改正数Δa,Δα(a新=a旧+Δa,α新=α旧+Δα.)以及η新,ξ新,N新。62最新课件

再根据:求出大地原点新的大地起算数据。

参考椭球参数和大地起算数据是一个参心坐标系建成的标志,一定的参考椭球和一定的大地起算数据确定了一定的坐标系。63最新课件④、1954年北京坐标系(BJ54旧)1、采用克拉索夫斯基椭球参数,通过与前苏联1942年坐标系联测而建立的坐标系。大地原点在前苏联的普尔科沃。2、存在的主要缺陷:(1)、椭球参数有较大误差。(2)、参考椭球面与我国的大地水准面有明显自西向东的系统性倾斜。(3)、几何大地测量和物理大地测量应用的参考面不统一。几何:克拉索夫斯基椭球物理:赫尔默特扁球(4)、定向不明确。短轴指向不是CIO,也不是我国的地极原点JYD1968.064最新课件⑤、1980年国家大地坐标系(GDZ80)-西安坐标系1、采用1975年国际大地测量与地球物理联合会(IUGG)推荐的4个地球椭球参数:长半径a,地心引力常数GM,地球二阶带球谐系数J2,地球自转速度ω。2、定位定向:椭球短轴平行于地球质心指向我国地极原点,大地起始子午面平行于格林尼治天文台的平均子午面3、大地原点在我国陕西省泾阳县永乐镇4、采用多点定位,椭球面同我国大地水准面最为密合5、根据Σζ2GDZ80=min求出参数ΔX0,ΔY0,ΔZ0,(Δa,Δα)6、在1954年北京坐标系基础上建立的,通过全国天文大地网整体平差。7、大地高程基准采用1956年黄海高程系。

四个基本参数为:a=6378140m;GM=3.986005×1014m3/s2;J2=1.08263×10-3;

ω=7.292115×10-5rad/s65最新课件⑥、新1954年北京坐标系(BJ54新)BJ54新是在GDZ80的基础上,改变GDZ80的IUGG椭球几何参数为克拉索夫斯基椭球参数,并将坐标原点(椭球中心)平移而建立起来的。二者有严密的数学转换模型。1、是BJ54旧与GDZ80之间的过渡坐标系。2、采用克拉索夫斯基椭球参数,坐标轴与GDZ80坐标轴平行.3、大地原点与GDZ80相同,但起算数据不同。4、采用多点定位,椭球面与大地水准面在我国不是最佳拟合两者坐标关系是:66最新课件67最新课件4)、地心坐标系①、地心地固空间直角坐标系原点与地球质心重合,Z轴指向地球北极,X轴指向格林尼治平均子午面与赤道交点,Y轴垂直于XOZ平面。②、地心地固大地坐标系:椭球中心与地球质心重合,椭球面与大地水准面最为密合,短轴与地球自转轴重合.点的坐标为大地经度L,大地纬度B,大地高H.XYZM0XYZLnBP′QHP③空间直角坐标与大地坐标的关系68最新课件③、WGS-84世界大地坐标系原点与地球质心重合,Z轴指向BIH1984.0定义的协议地极CIP方向,X轴指向BIH1984.0零度子午面和CTP赤道的交点,Y轴和Z、X轴构成右手坐标系。是GPS卫星广播星历的坐标参考基准四个基本参数为:a=6378137m;GM=3986005×108m3/s2;C2.0=1.08263×10-3;ω=7.292115×10-5rad/s69最新课件④、国际地球参考系统(ITRS)与国际地球参考框架(ITRF)1、国际地球参考系统(ITRS)原点为地心,是包括海洋和大气在内的地球质心长度单位为米m,在广义相对论框架下定义Z轴从地心指向BIH1984.0定义的协议地极CTPX轴从地心指向格林尼治平均子午面与CTP赤道的交点Y轴与XOZ平面垂直,构成右手坐标系2、国际地球参考框架(ITRF)是国际地球参考系统(ITRS)的具体实现。是通过ITRS分布全球的跟踪站的坐标和速度场来维持的。70最新课件①、垂线站心直角坐标系:以测站P为原点,P点的垂线为z轴(指向天顶为正),子午线方向为x轴(向北为正),y轴与x,z轴垂直(向东为正)构成左手坐标系。这种坐标系称为垂线站心直角坐标系,或称为站心天文坐标系。5)、站心坐标系:以测站为原点,测站上的法线(或垂线)为Z轴方向,X轴方向指向子午线的北方向,Y轴垂直平面XOZ并指向东。λφZ(天顶)Y(东)PZQdαX(北)Q′71最新课件②法线站心直角坐标系:以测站P点为原点,P点的法线方向为z轴(指向天顶为正),子午线北方向为x抽,y轴与x,z轴垂直,构成左手坐标系。这种坐标系就称为法线站心直角坐标系,或站心椭球坐标系

72最新课件1)、欧勒角:两个三维空间直角坐标系进行相互转换的旋转角:εx,εy,εz4、坐标系换算73最新课件2)、旋转矩阵①、二维直角坐标转换y2y1x1x2θy1·cosθx1·sinθx1·cosθy1·sinθ旋转矩阵为:74最新课件②、三维直角坐标转换b.绕y轴旋转εya.绕z轴旋转εzx1x0y1y0Z1(z1)εzεzY0(y0)x0z1x2z0εyεy75最新课件则三次旋转矩阵为:Z1X1Y1X2Y2Z2c.绕x轴旋转εxX2(x2)y0y2z0z2εxεx76最新课件一般εx,εy,εz为微小量,可取则有:坐标转换公式为:坐标转换公式可化为:77最新课件3)、站心直角坐标系与空间大地直角坐标系的转换关系

将站心坐标轴xyz变换成与空间坐标系的指向一致,需要如下几步:(1).y

坐标轴反向;(2).绕y轴900-B;(3).绕z轴旋转180º-L。

即:λφ78最新课件将站心坐标xyz变换成空间坐标系转换矩阵为:坐标转换式为:即:将空间坐标系变换成站心坐标xyz转换矩阵为:79最新课件同理法线站心坐标系与空间直角坐标系之间的转换式为:80最新课件4)、不同空间直角坐标系转换①、只考虑旋转的情况Z1X1Y1X2Y2Z2②、考虑平移、旋转、尺度变化的情况81最新课件上式又可表示为:忽略上式中尺度比m与旋转参数的乘积项又可表示为:82最新课件令③、转换参数Δx0、Δy0、Δz0、εx、εy、εz、m的计算:为了求得这七个参数,至少要有3个的公共点,当多于3个公共点时可按最小二乘法求解。则:设:83最新课件则:令则有根据VTPV=min可求得δX:进而可求得ΔX0、ΔY0、ΔZ0、εx、εy、εz、m。84最新课件5)、不同大地坐标系转换转换参数:3个平移参数:ΔX0、ΔY0、ΔZ03个旋转参数:εx、εy、εz1个尺度参数:m2个椭球元素变化参数:Δa、Δα大地坐标与空间直角坐标的关系为:对上式全微分得:85最新课件对上式两端乘上J-1并整理可得:其中:86最新课件87最新课件将以上式诸式代入可得:上式称为广义大地坐标微分公式。88最新课件根据3个以上的公共点,按最小二乘法求解ΔX0、ΔY0、ΔZ0、εx、εy、εz、m、Δa、Δα。若已知某点在坐标系1的大地坐标L1,B1,H1,欲求坐标系2中的大地坐标L2,B2,H2,则可用以上转换参数及大地微分公式求得dL,dB,dH,则有:89最新课件第三章

地球重力场

及地球形状的基本理论90最新课件一、地球及其运动的基本概念1、地球概说1)、地球的基本形状地球表面积:5.1亿Km2,海洋占70.8%,陆地占29.2%。地球体积为10830亿Km3。地球的实际形状很不规则。从总体情况看,地球的形状可用大地体来描述:是一个两极略扁,赤道突出,略显“梨形”的球体。为计算和研究的方便,通常用旋转椭球来表达地球形状。91最新课件2)、地球大气大气厚度:2000~3000km;大气质量:3.9×1021克从地面由低到高可分为:对流层,平流层,中层,电离层(热层),外层(散逸层)对流层:海平面以上40~50km;气温随高度增加而降低;空气对流,运动显著;湿度大;天气多变。平流层:对流层以上50~55km,气温不受地面影响;空气水平运动;水汽含量极少。中层:平流层以上80~85km,气温随高度增加而迅速下降,空气对流。电离层:中层顶部到800km的高空;温度随高度增加而急剧上升,大部分空气被电离,对电磁波的传播影响较大。外层:电离层一上;空气十分稀薄;受地球引力小。92最新课件2、地球运动概说1)、地球自转:地球自转的线速度:xyzoVωRφλ2)、地球公转:地球公转遵循开普勒三定律和万有引力定律。

①、开普勒三大行星定律a、行星运行的轨道是一个椭圆,而该椭圆的一个焦点与太阳的质心相重合

远日点近日点f93最新课件b、行星质心与太阳质心间的距离向量,在相同的时间内所扫过的面积相等,即面积速度(s/t)=常数c、行星运动周期的平方与轨道椭圆长半径的立方之比为常量。②、牛顿万有引力定律:宇宙中任意两个质点都彼此互相吸引,引力的大小与它们的质量的乘积成正比,与它们的距离平方成反比。是在开普勒三定律基础上推导来的,其包含了开普勒三定律。94最新课件3、地球基本参数1)、几何参数长半径:a=6378.164km扁率:α=1/298.2572)、物理参数自转速度:ω=7.29211515×10-5rad/s二阶带球谐系数:J2=1082.64×10-6地心引力常数:GM=398603km3/s295最新课件一)、引力与离心力1、引力F二、地球重力场的基本理论M为地球质量,m为质点质量,f为万有引力常数,r为质点到地心的距离。xyzoρFgPωr96最新课件2、离心力3、地球重力为F与P的和向量97最新课件二)、引力位和离心力位1、引力位(1)、位函数的定义位函数:在一个参考坐标系中,引力位对被吸引点三个坐标方向的一阶导数等于引力在该方向上的分力。借助于位理论来研究地球重力场是非常方便的。空间任意两质点m和M相互吸引的引力公式是:

假如两质点间的距离沿力的方向有一个微分变量dr,则必做功:98最新课件

用V表示位能,此功必等于位能的减少:

对上式积分,则得位能:引力位或位函数:取质点m的质量为单位质量则有:此函数则为质点M的引力位或位函数99最新课件根据牛顿力学第二定律上式表明:引力位梯度的负值在数值上等于单位质点受r处质体M吸引而形成的加速度值,单位质点所受引力在数值上就等于加速度。100最新课件(2)、位函数的性质①位函是标量函数,可对各分量求和,也可对某个质体进行积分。V=V1+V2+·····+Vn

所以,地球总体的位函数应等于组成其质量的各基元分体位函数dVi之和,对整个地球而言,则有xyzorRρSS0Seφmψλmdmλφ(Xm,ym,zm)(X,y,z)101最新课件②空间直角坐标系中,引力位对被吸引点各坐标轴的偏导数等于相应坐标轴上的加速度(或引力)向量的负值:102最新课件若设:(a,x),(a,y),(a,z)为a与各坐标轴之间的夹角,则ax=acos(a,x),ay=acos(a,y),az=acos(a,z)103最新课件(3)引力位的物理意义引力所做功等于位函数在终点和起点的函数值之差。在某一位置处质体的引力位就是将单位质点从无穷远处移动到该点所做功。MQ0QmF104最新课件2、离心力位xyzorSSSeλφ(X,y,z)ωyxz上式表明:坐标对时间的二阶导数就是单位质点的离心加速度。105最新课件1)、离心力位:将Q对各坐标轴求偏导数有:

可见,Q对各坐标轴的偏导数等于相应坐标轴上的加速度向量的负值。因而Q是位函数,称离心力位。106最新课件2)、离心力位函数的特性:(1)、其对各坐标轴的一阶偏导数为离心力加速度分量的负值。(2)、其二阶导数为布阿桑算子107最新课件三)、重力位1、重力位位函数是标函数,重力是引力和离心力的合力,则重力位就是引力位和离心力位之和:W=V+Q108最新课件2、重力位的特性(1)、重力位对三坐标标求偏导则得重力分量或重力加速度分量:对任意方向偏导数等于重力g在该方向的分力:(g,l)为重力g与lr的夹角。109最新课件

①.当g与l相垂直时,即(g,l)=900dw=0,有W=常数,当取不同常数时,就得到一簇曲面,称重力等位面,也就是水准面。有无数个。其中,完全静止的海水面所形成的重力等位面,称大地水准面。②.当g与l夹角为0时,即(g,l)=00,则有-dw=gdla.若dW≠0,必有dl≠0,说明水准面之间不相交和相切b.若dW=C,由于各处重力g不同,因而各处的dl也不同说明水准面之间不平行(2).重力位是标函数110最新课件2、调和函数(谐函数):二阶偏导数之和为零,满足拉普拉斯方程的函数。上式又称拉普拉斯方程,⊿V又称拉普拉斯算子。111最新课件3、引力位函数是调和函数,因为112最新课件(2)、重力位函数不是调和函数(谐函数),因其二阶导数不为零,不满足拉普拉斯方程。对地球外部点有:对地球内部点有:113最新课件可见,只要在地面上进行重力测量就可得到地球质量.对式子两端积分有:114最新课件四、地球的正常重力位和正常重力1、地球重力位计算的复杂性形状不规则,质量密度分极其不均匀,因而无法用以下重力位公式精确求得其重力。115最新课件2、正常椭球:一个形状和质量分布规则,接近于实际地球的旋转椭球。它产生的重力场称为正常重力场。正常重力场的等位面称为正常水准面。因为正常椭球面是一个正常水准面,所以正常椭球又称水准椭球。正常(地球)椭球是一个假想的球体。是一个理想化的椭球体。正常重力位U:近似的地球重力位。是一个函数简单、不涉及地球形状和密度便可直接得到的地球重力位近似值的辅助重力位。扰动位T:地球实际重力位W与正常重力位U之差。T=W-U根据扰动位T可求出大地水准面与正常水准面之差,便可最终解决地球重力位和形状的问题。116最新课件3、勒让德多项式:将(x2-1)n按二项式定理展开有:1)、勒让德多项式:递推公式:117最新课件令x=cosψ,则有:118最新课件2)、缔合勒让德多项式:其中,n表示阶,K表示次,当K=0时即为勒让德多项式令x=cosψ,则有:119最新课件3、地球引力位的数学表达式(1)、用地球惯性矩表达引力位的数学表达式空间点S的坐标(x,y,z),地面质点M的坐标(xm,ym,zm)xyzorRρSS0Seφmψλmdmλφ(Xm,ym,zm)(X,y,z)则有120最新课件再将代入,按(R/r)合并集项得:引力位函数有:用级数展开,再代入将121最新课件122最新课件讨论前三项:可见,V0就是把地球质量集中到地球质心处时的点的引力位。①、先看v0②、再讨论v1,ψ为R,r之间的夹角123最新课件上式两边同除以地球质量M,又因为为地球质心坐标。以地球质心为坐标系的原点,故有:x0=0y0=0z0=0因而v1=0124最新课件③、最后看v2将代入下式有:125最新课件用A、B、C表示质点M对x、y、z轴的转动惯量,用D、E、F表示惯性(离心力矩)即:那么:126最新课件若用球面坐标表示,作如下变换则:仿此推求Vi,代入下式,便可得地球引力位的计算式:127最新课件128最新课件(2)、用球谐函数表达地球引力位则第n阶地球引力位公式为:①129最新课件②球谐函数a.主球函数:勒让德多项式Pn(cosθ)称为n阶主球函数(或带球函数);b.缔合球函数:cosKλPKn(cosθ)及cosKλPKn(cosθ)称为缔合球函数,当K=n时称扇球函数,K≠n时称田球函数其中130最新课件xyzorRρSS0Seφmψλmdmλφ(X,y,z)θmθ(Xm,ym,zm)其中Θ+φ

=900。③用球谐函数表达地球引力位131最新课件将cos

Ψ代入下列各式:并顾及132最新课件则用球谐函数表示的第n阶地球引力位公式为:那么:令:133最新课件由上述可得用球谐函数表示的地球引力位公式:其中球谐系数An,AnK,BnK称为斯托克司常数,当n=2时,是二阶矩A,B,C,D,E的函数。将地球视为旋转椭球,质心为坐标原点,坐标轴为主惯性轴,则:134最新课件xyzoRλmdmθm(Xm,ym,zm)φm其中,A,B,C为质点dm对x,y,z轴的转动惯量。135最新课件同理:136最新课件通常还有下列球谐系数Jn,JnK,KnK:其中:137最新课件4.地球正常重力位则重力位公式为:138最新课件取前三项,可得:又已知:令:则有:139最新课件设赤道半径为ae,赤道上重力为ge,一般被吸引点离地面很近,可认为r=ae,将赤道上重力ge用引力fM/ae2代替,令:那么正常重力位公式可写成如下形式:根据:可得:140最新课件5.正常位水准面方程式:令U=U0即:由正常重力位公式知:当U=常数时,便确定了一个水准面。我们将赤道上一点的重力作为常数,此时:因而可得:141最新课件则可得正常位水准面方程式:又:这是一个旋转椭球的方程式,其表面是一个水准面,所以又称水准椭球,也称正常椭球。

到此,我们可知,通过研究地球的重力,便可确定地球的形状与大小。142最新课件6.正常重力公式:我们知道,位函在某方向的导数就是该方向力(加速度)的分量。那么重力位函数在铅垂方向的导数就是重力加速度。类似重力位W,正常重力位U也有下式:n为正常水准面法线,若忽略n与r的方向差异,则有:表示正常重力(1)、正常重力公式143最新课件(2)、赤道上的正常重力与两极的重力公式当θ=0时,根据可求得极点的rp:又根据地球扁率可知所以有:时,可得赤道上的正常重力:当①、144最新课件那么赤道上的正常重力又可表示为:时,可得两极上的正常重力:当②、145最新课件③克莱罗定律:重力扁率为略去二次项可得b.顾及扁率的正常重力公式:将代入经整理得:其中a.重力扁率146最新课件(3)、几种常用的正常重力公式:C、顾及扁率平方的正常重力公式D、闭合形式的正常重力公式(索密里安公式:)147最新课件(4)、高出椭球面H米的正常重力公式:

设水准椭球为均质圆球,R其半径,则地心对地面高H的质点的引力为:地心对大地水准面上的点的引力为:两式相咸得:设地球平均正常重力为:148最新课件由于H<<R,可将(1+H/R)-2用级数展开,取到二次项,可得:将地球平均正常重力的平均半径代入上式,可得:若不考虑二次项,则有:于是,可得高出椭球面H米的正常重力公式:149最新课件7、正常重力场参数根据上述关系,参数之间可相互推求。(1)、七个正常重力参数其中为四个基本参数。有如下关系:150最新课件(2)地球大地基准常数(正常椭球的基本参数):称为地球大地基准常数(或正常椭球的基本参数).一般将对应于实际地球的4个基本参数151最新课件③、WGS-84地球椭球大地基准及其导出量:152最新课件三、水准面、大地水准面、

似大地水准面、地球椭球1、水准面:重力等位面。具有几何性质与物理性质。1)、无数个;2)、复杂形状,不规则闭合,与铅垂线正交的曲面;3)、水准面彼此不平行,不相交;4)、每个水准面对应唯一的位能W=常数,物体在水准面上移动重力不做功。2、大地水准面:与平均海水面重合,不受潮汐、风浪及大气压影响,并延伸到大陆下面处处与铅垂线垂直的水准面。1)、一个特定的重力等位面,唯一。2)、其几何性质和物理性都很不规则,尚未能具体确定。因而只能用一个平均海水面代替它。153最新课件大地水准面

椭球面大地水准面大地水准面差距1.与重力线垂直,是重力等位面2.通过平均海水面154最新课件全球大地水准面图

155最新课件3、似大地水准面:与大地水准面很接近的一个曲面,是由地面点沿铅垂线向下量取正常高所得的点形成的连续曲面。1)、不是水准面2)、与水准面很接近,在海洋上与大地水准面完全重合,在大陆上几乎重合,在山区只有2~4m的差异。4、正常椭球(水准椭球、等位椭球):正常椭球:大地水准面的规则形状。实际上,质量与地球质量相同,自转速度与地球自转速度相同的规则物体都可正常椭球。目前都采用水准椭球作为正常椭球,又称等位椭球。正常椭球除要确定4个基本参数ae,fM,J2,ω外,还要定位和定向。中心与地球质心重合,短轴与地轴重合,起始子午面与起始天文子午面重合。156最新课件5、总地球椭球:与大地体最为密切的正常椭球。1)、中心与地球质心重合,短轴与地球短轴重合;起始子午面与起始天文子午面重合;质量与地球的质量相同;2)、4个基本参数ae,fM,J2,ω;3)、与大地体最密合,要满足全球范围内与大地水准面的差距N的平方和最小。6、参考椭球:大小与定位定向最接近于本国或本地区的地球椭球。1)、与本地区的大地水准面密合,表现在椭球面与本地区的大地水准面最接近及同点的法线和垂线最接近。2)、定位定向大小都与总椭球不同,3)、不同地区的参考椭球都不同。157最新课件

参考椭球面定义:与局部大地水准面吻合的旋转椭球面。参数:长半径a,扁率

起始子午面椭球的定位与定向:确定参考椭球与局部大地水准面的相对关系。158最新课件一、一般说明正高:以大地水准面为参考面正常高:以似大地水准为参考面高程异常ζ:似大地水准面到参考椭球面的高度。大地水准面差距N:大地水准面到参考椭球面的高度。四、高程系统159最新课件(1)、多值性:同一点的高程,经不同路线的观测值不同;(2)、不闭合性:即便水准测量没有误差,水准环线高程闭合差也不为零.为解决多值问题,必须引进高程系统。通常有以下三种:正高、正常高、力高高程系统如图,过O、B两点的水准确性面位能差是唯一的,由于水准面上各点的重力不同,水准面是不平行的,即两个等位面的间距是处处不同的。WBW01、水准面的不平行性及其对高程的影响:160最新课件2、正高系统

以大地水准面为高程基准面,地面点沿铅垂线到大地水准面的距离。它不随路线不同而异。则:B点的正高为:为大地水准面上C点到B点的平均重力,不能精确式中:测定,因而正高也不能精确求得。BCdHdhW=WBW=W0O大地水准面B点水准面A161最新课件3、正常高系统:其中,g由沿水准路线的重力测量得到,dh是水准测量的高差,是过B点的水准面与大地水准面的位能差,可由正常重力公式计算得来,正常高可以精确求得。不随水准路线而异,是唯一的。我国规定采用正常高高程系统作为我国高程的统一系统。①、定义162最新课件②、正常高高差的实际计算公式:(1)、正常高(高差)计算公式推导ε为正常位水准面不平行引起的高差改正λ为重力异常引起的高差改正163最新课件164最新课件又因为:所以有正常高计算公式:两点的正常高高差计算公式为:是水准测量测得的高差,第二项为正常位水准面不其中平行改正数,第一、二项之和称为概略高程,第三项为重力异常改正项。165最新课件令:则有:可见,正常高不是地面点到大地水准面的距离,由地面点沿铅垂线向下量取正常高得到的曲面不是等位面,因而不是水准面,这个面与大地水准面极为接近,称之为似大地水准面。166最新课件(2)、ε计算公式推导:当A、B间距不大时,水准路线O-A-B上各点的正常重力可用A、B两点的正常重力的平均值来代替,即:167最新课件那么下面来求Δγ:168最新课件对上式求微分有:亦即:以我国的平均纬度φ=350处的正常重力γ350代替γ0B有:169最新课件(3)、λ的计算公式170最新课件③、正高H正和正常高H常的差异在山区,二者差异不超过4m,平原地区不超过0.5m,海面上两者相等。又则171最新课件3、力高和地区力高高程系统:大地水准面ABHAHBW0WA=WB=WO1)、正高和正常高的缺陷性可见,等位面不是等高面,这给某些大型工程,特别是大型水库建设的测量工作带来不便,为了解决这一矛盾,采作力高高程系统172最新课件2)、力高高程系统:

用纬度45º处的正常重力γ45。代替γm建立的高程系统,其定义式为:用测区平均纬度处的正常重力γφ代替γm建立的高程系统,目的是为了使力高更接近于本地区的正常高数值,其定义式为:3)、地区力高高程系统4)、力高和正常高的差异在工程中,应根据实际情况,合理地选择正常高、力高或区域力高作为工程高程系统。173最新课件五、我国国家的高程基准大地水准面为水准测量的高程基准面。大地水准面与平均海水面不同。平均海水面高=大地水准面高+海面地形由于大地水准面高的确定精度,低于水准测量的精度,各国通过验潮确定一个起始高程点,作为高程基准点。不同高程起算点构成不同的系统,它们之间的高程相差可能达到米级。1、水准测量的高程基准面174最新课件

局部高程基准主要采用验潮方法。我国先后采用过的验潮站有:吴淞、达门、青岛、大连等青岛验潮站的优势:位置适中;半日潮有规律;不在江河入海;海面开阔、无岛礁;海底平坦;水深10米以上。

全球高程基准的统一:采用精密重力测量,确定精确的大地水准面模型,采用卫星测量确定各点精确的大地高,进而在统一的矿架确定精确的正高或正常高。175最新课件176最新课件水准测量的高程基准面177最新课件178最新课件

青岛验潮资料确定的大地水准面引测到稳固的基准点,作为全国水准测量的起算点,称为高程原点。高程原点的组成:主点——原点参考点和副点“1956国家高程基准”的原点高程:72.289m“1985国家高程基准”的原点高程:72.260m

2、水准原点179最新课件3、我国的高程系统:1、1956年黄海高程系统采用1950至1956年7月的潮汐资料推求的平均海水面2、1985黄海高程系统采用1950至1979年的潮汐资料推求的平均海水面。从1988年1月1日启用。“1956年黄海高程系统”与“1985年黄海高程系统”相差2.9厘米的固定常数。H85=H56-0.029m180最新课件六、关于测定垂线偏差和大地水准面差距的基本概念一)、关于测定垂线偏差的基本概念1、基本概念垂线偏差:地面点重力方向与该点相应椭球面上的法线之间的夹角,用μ

表示,子午(南北)分量为ξ

,卯酉(东西)分量为η

。天文经度:包含测站垂线的子午面与起始子午面的夹角;天文纬度:测站垂线的与赤道面的夹角;天文方位角:包含测站垂线的子午面与测站垂线和照准面所张成的垂直面的夹角;天文天顶距:测站垂线与观测方向的夹角181最新课件2、球面三角定理ACBbcabcaO1)、球面正弦定理:2)、球面边余弦定理:3)、球面角余弦定理:4)、球面半角和差定理:182最新课件5)、球面半边和差定理:6)、球面余切定理:7)、边的正弦与相邻角余弦乘积定理:8)、角的正弦与相邻边余弦乘积定理:183最新课件3、拉普拉斯方程1)、垂线偏差在任意垂直面上的投影分量:如图:ZM任意方向,大地方位角为A,该方向垂线偏差分量为μA,直角三角形ΔZZ2Z1,ΔZQZ1都是微小三角形,可认为是平面三角形,则有:以测站为中心作单位半径的辅助球,ZO为法线,Z1O为垂线,μ为垂线偏差,η为其在卯酉圈上(东西方向)的分量,ξ为其在子午圈上(南北方向)的分量。QA′900-B-ξ184最新课件2)、卯酉圈分量η

与子午圈分量ξ的计算在球面直角三角形ΔZ1Z2P中利用球面正弦定理可得:在球面直角三角形ΔZ1Z2P中利用球面余切定理可得:QA′900-B-ξ即可见,通过垂线偏差把天文坐标和大地坐标联系起来,从而实现两种坐标的转换。185最新课件3)、天文天顶距Z0与大地天顶距Z的归算公式:由半边差公式有:4)、拉普拉斯方程:天文方位角的归算公式由半角和公式有:186最新课件4、利用坐标转换公式推导拉普拉斯方程:

如图所示:xyz为大地站心坐标系,x1y1z1为天文站心坐标系。两者的关系为:1yy1xx1ΔA187最新课件

天文和大地坐标系分别与原点在站心,坐标轴与三维空间直角坐标系指向相同的坐标系的关系如下:188最新课件由上面第一式代入第二式得:上式与式相比较,得:1略去高次项,整理得:189最新课件并得出Laplace方程:顾及天文站心系(x1,y1,z1)与大地站心系(x,y,z)的关系:和天顶距、方位角和站心坐标的关系:190最新课件将第二式代入第一式,得:将sinα,sinZ1,cosα,cosZ1在A,Z处展开为级数式,并取前两项有:2191最新课件由第三式,得:由第一式或第二式,顾及上式,并略去高次项得:代入式,并略去二次以上的项,得:2192最新课件

如果椭球短轴不平行与地轴,大地起始子午面不平行大地起始子午面,则还要考虑三个旋转角的影响,此时,大地经纬度和方位角与天文经纬度和方位角的关系可推广为:193最新课件5、测定垂线偏差的基本方法1)、天文大地测量方法在天文大地点上,测定其大地坐标(L,B)和其天文坐标(λ,φ),利用下式便可计算该点的垂线偏差:某点的垂线偏差等于在该点处大地水准面与参考椭球面的夹角.它在某一个方向的分量等于该方向上大地水准面与参考椭AB参考椭球面似大地水准面ζAζBΔζδD球面的夹角。如图GPS基线AB,δ为大地水准面与参考椭球面的夹角,D为A,B两点距离。ζA,ζB为其高程异常,Δζ=ζB-ζA,基线方向垂线偏差分量计算公式为:12)、GPS测量方法194最新课件当A,B相距不远时,垂线偏差可认为是呈线性变化,那么有:设δA=δB=δ,则有:只要测出基线长D,大地方位角A,高程异常差Δζ,根据式便可求得ξ,η。对多条基线,可用最小二乘法求解。13)、重力测量方法4)、天文重力测量方法195最新课件二)、关于测定大地水准面差距的基本概念1、用地球重力场模型法计算大地水准面差距:大地水准面参考椭球面1)、扰动位T:大地水准面上一点P的实际重力位W与其正常重位U之差.即T=W-U。2)、大地水准面差距N:大地水准面到参考椭球面之间的距离。地球引力位为:正常引力位为:1212减得:196最新课件2、卫星无线电测高法研究大地水准面QeNH

如图,利用卫星雷达测出卫星到大地水准面(平均海水面)的高h,若卫星的大地高为H,则大地水准面差距N=H-h。如图还可知:r=r0+h,若已知卫星的位置向量r和测量向量h,则可计算大地水准面Q0的地心向量r0,进而可以确定大地水准面的形状,若已知大地水准面向量r0和观测向量h,则可以确定位卫星地心位置向量r。3、利用GPS高程拟合法研究似大地水准面在GPS网中,用GPS测出各控制点的大地高H,再用水准测量测出各点的正常高h,便可求出各点的高程异常ζi=Hi-hi,再利用最小二乘法求出拟合方程的系数,确定拟珍贵方程后,便可推算其它的高程异常。常用的拟合模型有:197最新课件4、利用斯托克司积分公式计算大地水准面差距5、利用最小二乘配置法研究似大地水准面或或198最新课件三)、关于确定地球形状的基本概念1)、基本原理沿子午圈观测两段或两面段以上的弧长及其两端点的纬度,根据以下方程,计算(或采用最小二乘法)计算椭球参数a与

α。进而确定地球形状与大小。子午圈平行圈P1P2P3P4P6P5S1S2S3也可测量不同纬度的平行圈的弧长来确定椭球参数。2).利用旧的椭球元素计算新的椭球元素若求得了Δa,Δα,便可得a新,α新。1、天文大地测量方法199最新课件由于由垂线偏差公式与大地水准面差公式可得:200最新课件201最新课件那么上式称为广义弧度测量方程,每个天文在地点都可列出这样的方程,然后利用最小二乘法求出椭球参数,确定椭球的形状大小,还可进行椭球定位。202最新课件2、重力测量方法3、空间大地测量方法在地面上测量两点(以上)的重力,并归算到平均海水面上,再测定这些点的大地纬度Bi及地球自转速度ω,根据克莱罗定理有:(利用最小二乘法)计算γe,β,可得到地球扁率α

=(5/2)q-β,进而确定地球形状与大小。203最新课件第四章

地球椭球及其数学

投影变换的基本理论204最新课件一、旋转椭球面的参数表示及数学性质1、椭球方程:起始子午面0ZXYWENSabQQ′平行圈赤道205最新课件2、经线和纬线的曲线方程M0饶Z轴旋转,形成纬圈(平行圈),其半径:经度为L的经线方程:OXYZM1M0MLLrARSyx在XOZ坐标面上的起始经线方程:1)、经线方程:206最新课件2)、纬圈方程:OXYZM

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论