版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古根河市重点中学2023-2024学年高二上数学期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,正方形边长为2cm,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.16cm B.cmC.8cm D.cm2.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.3.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.184.在△ABC中,角A,B,C的对边分别为a,b,c,若,则△ABC()A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.是锐角或直角三角形5.直线的倾斜角的大小为A. B.C. D.6.若双曲线的两个焦点为,点是上的一点,且,则双曲线的渐近线与轴的夹角的取值范围是()A. B.C. D.7.设.若,则=()A. B.C. D.e8.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.9.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.10.已知点P是圆上一点,则点P到直线的距离的最大值为()A.2 B.C. D.11.命题的否定是()A. B.C. D.12.在棱长为1的正四面体中,点满足,点满足,当和的长度都为最短时,的值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆,以点为中点的弦所在的直线的方程是___________14.若将抛掷一枚硬币所出现的结果“正面(朝上)”与“反面(朝上)”,分别记为H、T,相应的抛掷两枚硬币的样本空间为,则与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间的子集为______15.如图,E,F分别是三棱锥的棱AD,BC的中点,,,,则异面直线AB与EF所成的角为______.16.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)直线经过点,且与圆相交与两点,截得的弦长为,求的方程.18.(12分)已知圆心为的圆过原点,且直线与圆相切于点.(1)求圆的方程;(2)已知过点的直线的斜率为,且直线与圆相交于两点.①若,求弦的长;②若圆上存在点,使得成立,求直线的斜率.19.(12分)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D(单位:)与声音能量I(单位:)之间的关系,将测量得到的声音强度D和声音能量I的数据作了初步处理,得到如图所示的散点图:参考数据:其中,,,,,,,,(1)根据散点图判断,与哪一个适宜作为声音强度D关于声音能量I的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D关于声音能量I回归方程(3)假定当声音强度D大于时,会产生噪声污染.城市中某点P处共受到两个声源的影响,这两个声通的声音能量分别是和,且.已知点P处的声音能量等于与之和.请根据(2)中的回归方程,判断点P处是否受到噪声污染,并说明理由参考公式:对于一组数据,其回归直线斜率和截距的最小二乘估计公式分别为:20.(12分)已知动圆过定点,且与直线相切,圆心的轨迹为(1)求动点的轨迹方程;(2)已知直线交轨迹于两点,,且中点的纵坐标为,则的最大值为多少?21.(12分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程22.(10分)某情报站有.五种互不相同的密码,每周使用其中的一种密码,且每周都是从上周末使用的四种密码中等可能地随机选用一种.设第一周使用密码,表示第周使用密码的概率(1)求;(2)求证:为等比数列,并求的表达式
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由直观图确定原图形中平行四边形中线段的长度与关系,然后计算可得【详解】由斜二测画法,原图形是平行四边形,,又,,,所以,周长为故选:A2、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.3、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B4、C【解析】由余弦定理确定角的范围,从而判断出三角形形状【详解】由得-cosC>0,所以cosC<0,从而C为钝角,因此△ABC一定是钝角三角形.故选:C5、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握6、B【解析】由条件结合双曲线的定义可得,然后可得,然后可求出的范围即可.【详解】由双曲线的定义可得,结合可得当点不为双曲线的顶点时,可得,即当点为双曲线的顶点时,可得,即所以,所以,所以所以双曲线的渐近线与轴的夹角的取值范围是故选:B7、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.8、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D9、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A10、C【解析】求出圆心到直线的距离,由这个距离加上半径即得【详解】由圆,可得圆心坐标,半径,则圆心C到直线的距离为,所以点P到直线l的距离的最大值为.故选:C11、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C12、A【解析】根据给定条件确定点M,N的位置,再借助空间向量数量积计算作答.【详解】因,则,即,而,则共面,点M在平面内,又,即,于是得点N在直线上,棱长为1的正四面体中,当长最短时,点M是点A在平面上的射影,即正的中心,因此,,当长最短时,点N是点D在直线AC上的射影,即正边AC的中点,,而,,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,利用以为中点的弦所在的直线即为经过点且垂直于AC的直线求得直线斜率,由点斜式可求得直线方程【详解】圆的方程可化为,可知圆心为设,则以为中点的弦所在的直线即为经过点且垂直于的直线.又知,所以,所以直线的方程为,即故答案为:【点睛】本题考查圆的几何性质,考查直线方程求解,是基础题14、,,,【解析】先写出与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间,再写出其全部子集即可.【详解】与事件“一个正面(朝上)一个反面(朝上)”对应的样本空间为,此空间的子集为,,,故答案为:,,,15、【解析】取的中点,连结,由分别为的中点,可得(或其补角)为异面直线AB与EF所成的角,在求解即可.【详解】取的中点,连结由分别为的中点,则所以(或其补角)为异面直线AB与EF所成的角由分别是的中点,则,又在中,,则所以,又,所以在直角中,故答案为:16、4500【解析】根据题意可知大圆柱底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案为:4500.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.18、(1);(2)①,②.【解析】(1)圆心在线段的垂直平分线上,圆心也在过点且与垂直的直线上,联立求圆心,进而得半径即可;(2)①垂径定理即可求弦长;②圆上存在点,使得成立,即四边形是平行四边形,又,有都是等边三角形,进而得圆心到直线的距离为,列方程求解即可.试题解析:(1)由已知得,圆心在线段的垂直平分线上,圆心也在过点且与垂直的直线上,由得圆心,所以半径,所以圆的方程为;(2)①由题意知,直线的方程为,即,∴圆心到直线的距离为,∴;②∵圆上存在点,使得成立,∴四边形是平行四边形,又,∴都是等边三角形,∴圆心到直线的距离为,又直线的方程为,即,∴,解得.19、(1)更适合(2)(3)点P处会受到噪声污染,理由见解析【解析】(1)直接判断即可;(2)令,先算线性回归方程再算非线性回归方程;(3)利用基本不等式计算出的最小值,再与60比较即可.【小问1详解】更适合【小问2详解】令,则,,D关于W的回归方程是,则D关于I的回归方程是【小问3详解】设点P处的声音能量为,则因为所以当且仅当,即时等号成立所以,所以点P处会受到噪声污染20、(1)(2)【解析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得,再根据二次函数的性质可得最值.【小问1详解】由题设点到点的距离等于它到的距离,点的轨迹是以为焦点,为准线的抛物线,所求轨迹的方程为;【小问2详解】由题意易知直线的斜率存在,设中点为,直线的方程为,联立直线与抛物线,得,,且,,又中点为,即,,故恒成立,,,所以,当时,取最大值为.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式21、(1)(2)或【解析】由点到直线的距离公式求得圆的半径,则圆的方程可求;当直线的斜率不存在时,求得弦长为,满足题意;当直线的斜率不存在时,设出直线方程,求出圆心到直线的距离,再由垂径定理列式求,则直线方程可求【小问1详解】由题意得:圆的半径为,则圆的方程为;【小问2详解】当直线的斜率不存在时,直线方程为,得,符合题意;当直线的斜率存在时,设直线方程为,即圆心到直线的距离,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 反腐课件教学课件
- 《外事工作概述》课件
- 生产加工合同
- 建筑工程砖材料采购合同版04
- 债务催收委托代理协议
- 生物制药研发与生产合同(04版)
- 门头合同范本
- 《组,猪带绦虫》课件
- 《精馏基础知识fyh》课件
- 2024年度无人机研发生产合同标的及生产要求2篇
- 临床诊疗指南操作规范自查记录
- 燃气公司职业道德培训
- 别墅施工组织设计施工组织设计
- 中华国学智慧树知到期末考试答案2024年
- MOOC 国际交流英语-哈尔滨工业大学 中国大学慕课答案
- 中外政治思想史-形成性测试四-国开(HB)-参考资料
- 沟通技巧与商务礼仪
- 18 奇妙的建筑 (教案)岭南版美术三年级上册
- 小学三通两平台汇报
- 防火巡查记录表防火检查记录表
- “校园周边环境安全隐患”自检自查(排查)记录表
评论
0/150
提交评论