




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市张湾区东风高中2023-2024学年数学高二上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题2.若倾斜角为的直线过两点,则实数()A. B.C. D.3.函数的大致图象是()A. B.C. D.4.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值5.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.6.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.7.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.8.设为直线上任意一点,过总能作圆的切线,则的最大值为()A. B.1C. D.9.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)10.已知空间向量,,若,则实数的值是()A. B.0C.1 D.211.已知是函数的导函数,则()A0 B.2C.4 D.612.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直二、填空题:本题共4小题,每小题5分,共20分。13.若数列满足,则称为“追梦数列”.已知数列为“追梦数列”,且,则数列的通项公式__________.14.已知等差数列满足,,,则公差______15.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是______.16.设,则曲线在点处的切线的倾斜角是_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,椭圆:的离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由18.(12分)已知抛物线的焦点为F,点在抛物线上,且在第一象限,的面积为(O为坐标原点).(1)求抛物线的标准方程;(2)经过点的直线与交于,两点,且,异于点,若直线与的斜率存在且不为零,证明:直线与的斜率之积为定值.19.(12分)已知过抛物线的焦点F且斜率为1的直线l交C于A,B两点,且(1)求抛物线C的方程;(2)求以C的准线与x轴的交点D为圆心且与直线l相切的圆的方程20.(12分)已知甲组数据的茎叶图如图所示,其中数据的整数部分为茎,数据的小数部分(仅一位小数)为叶,例如第一个数据为5.3(1)求:甲组数据的平均值、方差、中位数;(2)乙组数据为,且甲、乙两组数据合并后的30个数据的平均值为,方差为,求:乙组数据的平均值和方差,写出必要的计算步骤.参考公式:平均值,方差21.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和22.(10分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.2、A【解析】解方程即得解.【详解】解:由题得.故选:A3、A【解析】由得出函数是奇函数,再求得,,运用排除法可得选项.【详解】法一:由函数,则,所以函数为奇函数,图象关于原点对称,所以排除B;因为,所以排除D;因为,所以排除C,故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.4、A【解析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A5、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A6、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).7、A【解析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.8、D【解析】根据题意,判断点与圆的位置关系以及直线与圆的位置关系,根据直线与圆的位置关系,即可求得的最大值.【详解】因为过过总能作圆的切线,故点在圆外或圆上,也即直线与圆相离或相切,则,即,解得,故的最大值为.故选:D.9、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.10、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C11、D【解析】由导数运算法则求出导函数,再计算导数值【详解】由题意,,所以故选:D12、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据题意,由“追梦数列”的定义可得“追梦数列”是公比为的等比数列,进而可得若数列为“追梦数列”,则为公比为3的等比数列,进而由等比数列的通项公式可得答案【详解】根据题意,“追梦数列”满足,即,则数列是公比为的等比数列.若数列为“追梦数列”,则.故答案为:.14、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:215、【解析】化简椭圆的方程为标准形式,列出不等式,即可求解.【详解】由题意,方程可化为,因为方程表示焦点在轴上的椭圆,可得,解得,实数的取值范围是.故答案为:.16、【解析】利用导数的定义,化简整理,可得,根据导数的几何意义,即可求得答案.【详解】因为=,所以,则曲线在点处的切线斜率为,即,又所以所求切线的倾斜角为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,,所以,点到直线的距离,所以,整理可得:即,所以或,所以或,所以存在直线:或使得的面积为.18、(1);(2)证明见解析.【解析】(1)由题可得,然后结合面积公式可得,即求;(2)通过分类讨论,利用韦达定理法结合斜率公式计算即得.【小问1详解】因为点抛物线上,所以,,,因为,故解得,抛物线方程为;【小问2详解】当直线的斜率不存在时,直线为,得,.,,则.当直线的斜率存在时,设直线为,设,,联立得:因为,所以,.所以,所以直线与的斜率之积为定值.19、(1);(2)【解析】(1)首先表示出直线l的方程,再联立直线与抛物线方程,消去,列出韦达定理,再根据焦点弦公式计算可得;(2)由(1)可得,再利用点到直线的距离求出半径,即可求出圆的方程;【详解】解析:(1)由已知得点,∴直线l的方程为,联立去,消去整理得设,,则,,∴抛物线C的方程为(2)由(1)可得,直线l的方程为,∴圆D的半径,∴圆D的方程为【点睛】本题考查抛物线的简单几何性质,属于中档题.20、(1),,;(2),.【解析】(1)根据茎叶图求平均值,再由方差与均值的关系求,将茎叶图中的数据从小到大排列确定中位数M.(2)由甲乙平均数及(1)的结果列方程求乙组数据的平均值,再由方差与均值的关系列方程组求出,进而求方差.【小问1详解】,∴,由茎叶图知:数据从小到大排列为∴.【小问2详解】由题意,,又,因此.21、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代入上式得,化简得,解得或-2(舍去),则,所以【小问2详解】∵,当时,,当时,,符合上式,则,所以,令,则,,∴,化简得综上,的前n项和22、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角坐标系,设,即可得到点,,的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 事业单位工会活动方案
- 税务顾问服务协议书
- 云计算服务平台建设合同
- 桩基工程施工专业分包规定合同
- 合同付款补充协议书
- 烟草产品购销合同
- 公司商铺租赁合同书
- 独家代理销售合同
- 办公效率提升解决方案实践
- 旅游行业线上营销推广协议
- 深度学习架构创新-深度研究
- 基层医疗卫生服务能力提升考核试卷
- 2025年上半年东莞望牛墩镇事业单位招考(10人)易考易错模拟试题(共500题)试卷后附参考答案
- 2025年度茶叶品牌加盟店加盟合同及售后服务协议
- 2025年江苏连云港市赣榆城市建设发展集团有限公司招聘笔试参考题库附带答案详解
- 氧气、乙炔工安全操作规程(3篇)
- 2024年广东省公务员录用考试《行测》真题及解析
- GB/T 12723-2024单位产品能源消耗限额编制通则
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- 电梯每月电梯安全调度
- 2024年部编版五年级下册语文第一单元综合检测试卷及答案
评论
0/150
提交评论