版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省巴东三中2023-2024学年高二上数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交2.已知数列是等比数列,,数列是等差数列,,则的值是()A. B.C. D.3.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.4.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.5.若是函数的极值点,则函数()A.有最小值,无最大值 B.有最大值,无最小值C.有最小值,最大值 D.无最大值,无最小值6.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.7.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称8.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=09.函数在其定义域内可导,的图象如图所示,则导函数的图象为A. B.C. D.10.若则()A.−2 B.−1C.1 D.211.直线关于直线对称的直线方程为()A. B.C. D.12.已知直线,椭圆.若直线l与椭圆C交于A,B两点,则线段AB的中点的坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标是______.14.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为_______.15.已知椭圆与坐标轴依次交于A,B,C,D四点,则四边形ABCD面积为_____.16.已知抛物线的焦点为,点为抛物线上一点,以为圆心的圆经过原点,且与抛物线的准线相切,切点为,线段交抛物线于点,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)解关于的不等式;(Ⅱ)若关于的不等式恒成立,求实数的取值范围18.(12分)近年来某村制作的手工艺品在国内外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(ⅰ)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ⅱ)若3位行家中仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关.若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级;若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(ⅲ)若3位行家中有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立(1)求一件手工艺品质量为B级的概率;(2)求81件手工艺品中,质量为C级的手工艺品件数的方差;(3)求10件手工艺品中,质量为D级的手工艺品最有可能是多少件?19.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.20.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.21.(12分)已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,是抛物线上的点,点到焦点的距离为1,且到轴的距离是(1)求抛物线的标准方程;(2)假设直线通过点,与抛物线相交于,两点,且,求直线的方程22.(10分)已知函数.(I)若曲线在点处的切线方程为,求的值;(II)若,求的单调区间.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.2、B【解析】根据等差数列和等比数列下标和的性质即可求解.【详解】为等比数列,,,,;为等差数列,,,,,∴.故选:B.3、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.4、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.5、A【解析】对求导,根据极值点求参数a,再由导数研究其单调性并判断其最值情况.【详解】由题设,且,∴,可得.∴且,当时,递减;当时,递增;∴有极小值,无极大值.综上,有最小值,无最大值.故选:A6、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题7、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.8、B【解析】由题意,,所以,即,故选B9、D【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.详解:观察函数图象,从左到右单调性先单调递增,然后单调递减,最后单调递增.对应的导数符号为正,负,正.,选项D的图象正确.故选D.点睛:本题主要考查函数图象的识别和判断,函数单调性与导数符号的对应关系是解题关键.10、B【解析】分子分母同除以,化弦为切,代入即得结果.【详解】由题意,分子分母同除以,可得.故选:B.11、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C12、B【解析】联立直线方程与椭圆方程,消y得到关于x的一元二次方程,根据韦达定理可得,进而得出中点的横坐标,代入直线方程求出中点的纵坐标即可.【详解】由题意知,,消去y,得,则,,所以A、B两点中点的横坐标为:,所以中点的纵坐标为:,即线段AB的中点的坐标为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将抛物线的方程化为标准形式,即可求解出焦点坐标.【详解】因为抛物线方程,焦点坐标为,且,所以焦点坐标为,故答案为:.14、【解析】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出,由此能求出的最小值【详解】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由双曲线的定义,由椭圆定义,可得,,又,,可得,得,即,可得,则,当且仅当,上式取得等号,可得的最小值为故答案为:【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用15、【解析】根据椭圆的方程,求得顶点的坐标,结合菱形的面积公式,即可求解.【详解】由题意,椭圆,可得,可得,所以椭圆与坐标轴的交点分别为,此时构成的四边形为菱形,则面积为.故答案为:.16、【解析】分析可知为等腰三角形,可得出,将点的坐标代入抛物线的方程,可求得的值,可得出抛物线的方程以及点的坐标,求出点的坐标,设点,其中,分析可知,利用平面向量共线的坐标表示求出的值,进而可求得结果.【详解】由抛物线的定义结合已知条件可知,则为等腰三角形,易知抛物线的焦点为,故,即点,因为点在抛物线上,则,解得,所以,抛物线的方程为,故点、,因为以点为圆心,为半径的圆与直线相切于点,则,设点,其中,,,由题意可知,则,整理可得,解得,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零点法去绝对值,然后再解不等式.(Ⅱ)将原函数转化为分段函数,再结合函数图像求得其最小值.将恒成立转化为试题解析:(Ⅰ)或或或所以原不等式解集为(Ⅱ),由函数图像可知,所以要使恒成立,只需考点:1绝对值不等式;2恒成立问题;3转化思想18、(1)(2)(3)2件【解析】(1)根据相互独立事件的概率公式计算可得;(2)首先求出一件手工艺品质量为C级的概率,设81件手工艺品中质量为C级的手工艺品是X件,则,再根据二项分布的方差公式计算可得;(3)首先求出一件手工艺品质量为D级的概率,设10件手工艺品中质量为D级的手工艺品是ξ件,则,根据二项分布的概率公式求出的最大值,即可得解;【小问1详解】解:一件手工艺品质量为B级的概率为【小问2详解】解:一件手工艺品质量为C级的概率为,设81件手工艺品中质量为C级的手工艺品是X件,则,所以【小问3详解】解:一件手工艺品质量为D级的概率为,设10件手工艺品中质量为D级的手工艺品是ξ件,则,则,由解得,所以当时,,即,由解得,所以当时,,所以当时,最大,即10件手工艺品中质量为D级的最有可能是2件19、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数列求和公式可求得.【小问1详解】解:若选①,,且,故数列是首项为,公比为的等比数列,,故;若选②,,所以,,且,故数列是以为首项,以为公比的等比数列,所以,,故,所以,,故,.【小问2详解】解:由(1)可知,则,所以,.当为偶数时,;当为奇数时,.综上所述,.20、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.21、(1);(2)【解析】(1)根据抛物线的定义,结合到焦点、轴的距离求,写出抛物线方程.(2)直线的斜率不存在易得与不垂直与题设矛盾,设直线方程联立抛物线方程,应用韦达定理求,,进而求,由题设向量垂直的坐标表示有求直线方程即可.【详解】(1)由己知,可设抛物线的方程为,又到焦点的距离是1,∴点到准线的距离是1,又到轴的距离是,∴,解得,则抛物线方程是(2)假设直线的斜率不存在,则直线的方程为,与联立可得交点、的坐标分别为,,易得,可知直线与直线不垂直,不满足题意,故假设不成立,∴直线的斜率存在.设直线为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度数据分析和处理合同
- 2024年度文化艺术节组织服务合同
- 2024年度水果连锁加盟店苹果采购合同(零售业)
- 2024年度广告投放合作保密合同
- 连体服市场发展现状调查及供需格局分析预测报告
- 2024年度建筑工地塔吊司机劳动合同
- 2024年度特许经营合同:某连锁品牌授权某地区投资者开设加盟店
- 补内胎用全套工具市场发展预测和趋势分析
- 2024年度建筑工程施工合同标的物为一个住宅小区的建设
- 2024年度互联网信息服务合同:互联网企业与用户之间的信息服务协议
- 儿童康复治疗各个阶段
- GB/T 44712-2024国际间遗体转运基本要求
- 医疗美容诊所装修合同
- 中国石化刮刮卡合同范例
- 冬季准备活动预防伤害
- 广东省广州市(2024年-2025年小学五年级语文)人教版期中考试((上下)学期)试卷及答案
- 养老院服务评价与改进制度
- 基因组编辑技术专题
- GB/T 17395-2024钢管尺寸、外形、重量及允许偏差
- 自考《计算机应用基础》高等教育自学考试试题与参考答案(2024年)
- 大学生法律基础学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论