甘肃省天水第一中学2024届数学高二上期末统考试题含解析_第1页
甘肃省天水第一中学2024届数学高二上期末统考试题含解析_第2页
甘肃省天水第一中学2024届数学高二上期末统考试题含解析_第3页
甘肃省天水第一中学2024届数学高二上期末统考试题含解析_第4页
甘肃省天水第一中学2024届数学高二上期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省天水第一中学2024届数学高二上期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,则()A.5 B.6C.7 D.82.设点是点,,关于平面的对称点,则()A.10 B.C. D.383.已知递增等比数列的前n项和为,,且,则与的关系是()A. B.C. D.4.已知函数f(x)的图象如图所示,则导函数f(x)的图象可能是()A. B.C. D.5.等差数列中,已知,,则的前项和的最小值为()A. B.C. D.6.的二项展开式中,二项式系数最大的项是第()项.A.6 B.5C.4和6 D.5和77.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.18.方程化简的结果是()A. B.C. D.9.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.10.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.11.方程表示椭圆的充分不必要条件可以是()A. B.C. D.12.已知椭圆的离心率为,左、右焦点分别为、,过作轴的平行线交椭圆于、两点,为坐标原点,双曲线的虚轴长为,且以、为顶点,以直线、为渐近线,则椭圆的短轴长为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两条渐近线的夹角为,则_______14.达•芬奇认为:和音乐一样,数学和几何“包含了宇宙的一切”,从年轻时起,他就本能地把这些主题运用在作品中,布达佩斯的伊帕姆维泽蒂博物馆收藏的达•芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达•芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的边长为1,则点到直线的距离是__________.15.过点且与直线平行的直线的方程是______.16.函数,则函数在处切线的斜率为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围18.(12分)已知椭圆的离心率为,且点在椭圆上(1)求椭圆的标准方程;(2)若过定点的直线交椭圆于不同的两点、(点在点、之间),且满足,求的取值范围.19.(12分)如图所示,在直四棱柱中,底面ABCD是菱形,点E,F分别在棱,上,且,(1)证明:点在平面BEF内;(2)若,,,求直线与平面BEF所成角的正弦值20.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?21.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.22.(10分)在平面直角坐标系中,已知直线:(t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求曲线C的直角坐标方程;(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用空间向量的模公式求解.【详解】因向量,所以,故选:A2、A【解析】写出点坐标,由对称性易得线段长【详解】点是点,,关于平面的对称点,的横标和纵标与相同,而竖标与相反,,,,直线与轴平行,,故选:A3、D【解析】设等比数列的公比为,由已知列式求得,再由等比数列的通项公式与前项和求解.【详解】设等比数列的公比为,由,得,所以,又,所以,所以,,所以即故选:D4、D【解析】根据导函数正负与原函数单调性关系可作答【详解】原函数在上先减后增,再减再增,对应到导函数先负再正,再负再正,且原函数在处与轴相切,故可知,导函数图象为D故选:D5、B【解析】由等差数列的性质将转化为,而,可知数列是递增数,从而可求得结果【详解】∵等差数列中,,∴,即.又,∴的前项和的最小值为故选:B6、A【解析】由二项展开的中间项或中间两项二项式系数最大可得解.【详解】因为二项式展开式一共11项,其中中间项的二项式系数最大,易知当r=5时,最大,即二项展开式中,二项式系数最大的为第6项.故选:A7、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.8、D【解析】由方程的几何意义得到是椭圆,进而得到焦点和长轴长求解.【详解】∵方程,表示平面内到定点、的距离的和是常数的点的轨迹,∴它的轨迹是以为焦点,长轴,焦距的椭圆;∴;∴椭圆的方程是,即为化简的结果故选:D9、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.10、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.11、D【解析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.12、C【解析】不妨取点在第一象限,根据椭圆与双曲线的几何性质,以及它们之间的联系,可得点的坐标,再将其代入椭圆的方程中,解之即可【详解】解:由题意知,在椭圆中,有,在双曲线中,有,,即,双曲线的渐近线方程为,不妨取点在第一象限,则的坐标为,即,将其代入椭圆的方程中,有,,解得,椭圆的短轴长为故选:二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】首先判断渐近线的倾斜角,再求的值.【详解】由条件可知双曲线的其中一条渐近线方程是,因为两条渐近线的夹角是,所以直线的倾斜角是或,即或.故答案为:或14、【解析】根据题意,求得△的三条边长,在三角形中求边边上的高线即可.【详解】根据题意,延长交于点,连接,如下所示:在△中,容易知:;同理,,满足,设点到直线的距离为,由等面积法可知:,解得,即点到直线的距离是.故答案为:.15、【解析】设出直线的方程,代入点的坐标,求出直线的方程.【详解】设过点且与直线平行的直线的方程为,将代入,则,解得:,所以直线的方程为.故答案为:16、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等比数列的基本量,列式,即可求得首项和公比,再求通项公式;(2)由题意转化为求数列的前项和的最大值,即可求参数的取值范围.【小问1详解】设等比数列的公比为,则,①,即,得,即,代入①得,解得:,所以;【小问2详解】由(1)可知,数列是首项为2,公比为的等比数列,,若对任意恒成立,即,数列,,单调递增,的最大值无限趋近于4,所以18、(1)(2)【解析】(1)代入点坐标,结合离心率,以及即得解;(2)设直线方程,与椭圆联立,转化为,结合韦达定理和判别式,分析即得解【小问1详解】由题意可知:,解得:椭圆的标准方程为:【小问2详解】①当直线斜率不存在,方程为,则,.②当直线斜率存在时,设直线方程为,联立得:.由得:.设,,则,,又,,,则,,所以,所以,解得:,又,综上所述:的取值范围为.19、(1)证明见解析;(2).【解析】(1)设、、、AC与BD的交点为O,由直四棱柱的性质构建空间直角坐标系,确定、的坐标可得,即可证结论.(2)由题设,求出、、的坐标,进而求得面BEF的法向量,利用空间向量夹角的坐标表示求直线与平面BEF所成角的正弦值【小问1详解】由题意,,设,,,设AC与BD的交点为O,以O为坐标原点,分别以BD,AC所在直线为x,y轴建立如下空间直角坐标系,则,,,,所以,,得,即,因此点在平面BEF内【小问2详解】由(1)及题设,,,,,所以,,设为平面BEF的法向量,则,令,即设直线与平面BEF所成角为,则20、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.21、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论