![合肥市重点中学2024届数学高二上期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/c729dd5aae8f525a5b76985156290cff/c729dd5aae8f525a5b76985156290cff1.gif)
![合肥市重点中学2024届数学高二上期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/c729dd5aae8f525a5b76985156290cff/c729dd5aae8f525a5b76985156290cff2.gif)
![合肥市重点中学2024届数学高二上期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/c729dd5aae8f525a5b76985156290cff/c729dd5aae8f525a5b76985156290cff3.gif)
![合肥市重点中学2024届数学高二上期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/c729dd5aae8f525a5b76985156290cff/c729dd5aae8f525a5b76985156290cff4.gif)
![合肥市重点中学2024届数学高二上期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/c729dd5aae8f525a5b76985156290cff/c729dd5aae8f525a5b76985156290cff5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合肥市重点中学2024届数学高二上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与圆相交于、两点,且(其中为原点),则的值为()A. B.C. D.2.直线的一个方向向量为,则它的斜率为()A. B.C. D.3.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A. B.C. D.4.设是数列的前项和,已知,则数列()A.是等比数列,但不是等差数列 B.是等差数列,但不是等比数列C.是等比数列,也是等差数列 D.既不是等差数列,也不是等比数列5.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.6.记等比数列的前项和为,若,,则()A.12 B.18C.21 D.277.直线的倾斜角的大小为A. B.C. D.8.已知,则的最小值是()A.3 B.8C.12 D.209.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若序列的所有项都是1,且,.记数列的前项和、前项积分别为,,若,则的最小值为()A.2 B.3C.4 D.510.命题若,且,则,命题在中,若,则.下列命题中为真命题的是()A. B.C. D.11.已知等差数列的前项和为,若,则()A B.C. D.12.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()二、填空题:本题共4小题,每小题5分,共20分。13.设点是双曲线上的一点,、分别是双曲线的左、右焦点,已知,且,则双曲线的离心率为________14.已知数列满足,,则使得成立的n的最小值为__________.15.圆上的点到直线的距离的最大值为__________.16.如图,棱长为2的正方体中,E,F分别为棱、的中点,G为面对角线上一个动点,则三棱锥的外接球表面积的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围18.(12分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.19.(12分)已知椭圆()与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且,(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)P是椭圆C上异于上顶点,下顶点的任一点,直线,,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值20.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.21.(12分)已知函数在处的切线方程为.(1)求的解析式;(2)求函数图象上的点到直线的距离的最小值.22.(10分)已知函数,求(1)(2)(3)曲线在处的切线方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析出为等腰直角三角形,可得出原点到直线的距离,利用点到直线的距离公式可得出关于的等式,由此可解得的值.【详解】圆的圆心为原点,由于且,所以,为等腰直角三角形,且圆心到直线的距离为,由点到直线的距离公式可得,解得.故选:D.【点睛】关键点点睛:本题考查利用圆周角求参数,解题的关键在于求出弦心距,再利用点到直线的距离公式列方程求解参数.2、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A3、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.4、B【解析】根据与的关系求出通项,然后可知答案.【详解】当时,,当时,,综上,的通项公式为,数列为等差数列同理,由等比数列定义可判断数列不是等比数列.故选:B5、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.6、C【解析】根据等比数列的性质,可知等比数列的公比,所以成等比数列,根据等比的中项性质即可求出结果.【详解】因为为等比数列的前项和,且,,易知等比数列的公比,所以成等比数列所以,所以,解得.故选:C7、A【解析】考点:直线的倾斜角专题:计算题分析:因为直线的斜率是倾斜角的正切值,所以欲求直线的倾斜角,只需求出直线的斜率即可,把直线化为斜截式,可得斜率,问题得解解答:解:∵x-y+1=0可化为y=x+,∴斜率k=设倾斜角为θ,则tanθ=k=,θ∈[0,π)∴θ=故选A点评:本题主要考查了直线的倾斜角与斜率之间的关系,属于直线方程的基础题型,需要学生对基础知识熟练掌握8、A【解析】利用基本不等式进行求解即可.【详解】因为,所以,当且仅当时取等号,即当时取等号,故选:A9、C【解析】先利用序列的所有项都是1,得到,整理后得到是等比数列,进而求出公比和首项,从而求出和,利用,列出不等式,求出,从而得到的最小值【详解】因为,,所以,又序列的所有项都是1,所以它的第项,所以,所以数列是等比数列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值为4.故选:C.10、A【解析】根据不等式性质及对数函数的单调性判断命题的真假,根据大角对大边及正弦定理可判断命题的真假,再根据复合命题真假的判断方法即可得出结论.【详解】解:若,且,则,当时,,所以,当时,,所以,综上命题为假命题,则为真命题,在中,若,则,由正弦定理得,所以命题为真命题,为假命题,所以为真命题,,,为假命题.故选:A.11、B【解析】利用等差数列的性质可求得的值,再结合等差数列求和公式以及等差中项的性质可求得的值.【详解】由等差数列的性质可得,则,故.故选:B.12、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由双曲线的定义可求得、,利用勾股定理可得出关于、的齐次等式,进而可求得该双曲线的离心率.【详解】由双曲线定义可得,故,由勾股定理可得,即,可得,因此,该双曲线的离心率为.故答案为:.14、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.15、【解析】先求得圆心到直线的距离,结合圆上的点到直线的距离的最大值为,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,所以圆上的点到直线的距离的最大值为.故答案为:16、【解析】以DA,DC,分别为x轴,y轴,z轴建系,则,设,球心,得到外接球半径关于的函数关系,求出的最小值,即可得到答案;【详解】解:以DA,DC,分别为x轴,y轴,z轴建系.则,设,球心,,又.联立以上两式,得,所以时,,为最小值,外接球表面积最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.18、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)根据题意,可以利用铅锤底水平高的方法求四边形APBQ的面积,即是要利用韦达定理算出.【小问1详解】由题意,即;抛物线,焦点为,故,所以椭圆C的标准方程为:.【小问2详解】由题意作图如下:设AB直线的方程为:,并设点,,联立方程:得:,∴……①,……②,;由于A,B两点在直线PQ的两边(如上图),所以,即,将①②带入得:,解得;即由题意直线PQ的方程为,联立方程解得,,∴;将线段PQ看做铅锤底,A,B两点的横坐标之差看做水平高,得四边形APBQ的面积为:,当且仅当m=0时取最大值,而,所以的最大值为.19、(1);(2)存在,;(3)证明见解析,定值2【解析】(1)根据已知条件,用待定系数解方程组即可得到C的方程;(2)设出AB的方程,与椭圆方程联立,得到根与系数关系,代入由确定方程内即可得到结果;(3)设P点坐标,求出M和N坐标,设出圆G的圆心坐标,求得圆的半径,由垂径定理求得切线长|OT|,结合P在椭圆上可证|OT|为定值﹒【小问1详解】设椭圆C的方程为将点代入椭圆方程有点解得,(舍)∴椭圆的方程为;【小问2详解】设,当AB斜率存在时,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,∴圆的方程为;又若AB斜率不存在时,检验知满足条件,故存在圆心在原点的圆符合题意;【小问3详解】如图:,,设,直线,令,得;直线,令,得;解法一:设圆G的圆心为,则,,,而,∴,∴,∴,即线段OT长度为定值2解法二:,而,∴,∴由切割线定理得.∴,即线段OT的长度为定值220、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距离和半径比较即可判断;(2)求出圆心到直线的距离,利用弦长计算即可得出.【详解】(1)圆C:的圆心为,半径为2,当时,线l:,则圆心到直线的距离为,直线l与圆C相离;(2)圆心到直线的距离为,弦长为,则,解得或.21、(1);(2).【解析】(1)由题可得,然后利用导数的几何意义即求;(2)由题可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铸铁加热器行业行业发展趋势及投资战略研究分析报告
- 2025年中国汽车鼓式制动器行业发展运行现状及投资潜力预测报告
- 2025年中国景区观光车行业发展前景预测及投资规划建议报告
- 电商平台中如何提高快件追踪透明度的方法研究
- 电商平台用户体验的结构化优化
- 校直台行业行业发展趋势及投资战略研究分析报告
- 电子竞技行业与职业教育的融合发展
- 南京南钢产业发展有限公司资源综合利用高效发电项目环境影响报告表
- 【可行性报告】2025年智慧汽车行业项目可行性分析报告
- xxx项目社会稳定风险评估报告(五)
- 二零二五年度大型自动化设备买卖合同模板2篇
- 2024版金矿居间合同协议书
- 2025内蒙古汇能煤化工限公司招聘300人高频重点提升(共500题)附带答案详解
- 优秀班主任经验交流课件-班主任经验交流课件
- HP-DL380-Gen10-服务器用户手册
- 2023年广州金融控股集团有限公司招聘笔试题库及答案解析
- YB∕T 105-2014 冶金石灰物理检验方法
- 血液科品管圈汇报-PPT课件
- 骗提个人住房公积金检讨书
- 管道保温及面积计算公式
- 江西省日照小时数
评论
0/150
提交评论