广西玉林市北流实验中学2023年高二数学第一学期期末联考模拟试题含解析_第1页
广西玉林市北流实验中学2023年高二数学第一学期期末联考模拟试题含解析_第2页
广西玉林市北流实验中学2023年高二数学第一学期期末联考模拟试题含解析_第3页
广西玉林市北流实验中学2023年高二数学第一学期期末联考模拟试题含解析_第4页
广西玉林市北流实验中学2023年高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西玉林市北流实验中学2023年高二数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点()A. B.C. D.2.下列说法正确的个数有()(ⅰ)命题“若,则”的否命题为:“若,则”;(ⅱ)“,”的否定为“,使得”;(ⅲ)命题“若,则有实根”为真命题;(ⅳ)命题“若,则”的否命题为真命题;A.1个 B.2个C.3个 D.4个3.把点随机投入长为,宽为的矩形内,则点与矩形四边的距离均不小于的概率为()A. B.C. D.4.连续抛掷一枚硬币3次,观察正面出现的情况,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至多2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面5.,则()A. B.C. D.6.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.7.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.8.椭圆上的点P到直线x+2y-9=0的最短距离为()A. B.C. D.9.设等差数列,前n项和分别是,若,则()A.1 B.C. D.10.阿波罗尼斯约公元前年证明过这样一个命题:平面内到两定点距离之比为常数且的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比满足:,当P、A、B三点不共线时,面积的最大值是()A. B.2C. D.11.某学校高二级选择“史政地”“史政生”和“史地生”组合的同学人数分别为240,120和60.现采用分层抽样的方法选出14位同学进行一项调查研究,则“史政生”组合中选出的人数为()A.8 B.6C.4 D.312.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等二、填空题:本题共4小题,每小题5分,共20分。13.设,则_________14.已知数列满足,则=________.15.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是一个半径为2的半圆,则该几何体的体积为________.16.已知点是椭圆上的一点,分别为椭圆的左、右焦点,已知=120°,且,则椭圆的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)将离心率相同的两个椭圆如下放置,可以形成一个对称性很强的几何图形,现已知.(1)若在第一象限内公共点的横坐标为1,求的标准方程;(2)假设一条斜率为正的直线与依次切于两点,与轴正半轴交于点,试求的最大值及此时的标准方程.18.(12分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.19.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程20.(12分)已知直线l过点,与两坐标轴的正半轴分别交于A,B两点,O为坐标原点(1)若的面积为,求直线l的方程;(2)求的面积的最小值21.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求;(2)若,求的面积的最大值22.(10分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据圆的切线性质,结合圆的标准方程、圆与圆的位置关系进行求解即可.【详解】因为、是圆的两条切线,所以,因此点、在以为直径的圆上,因为点是直线:上的动点,所以设,点,因此的中点的横坐标为:,纵坐标为:,,因此以为直径的圆的标准方程为:,而圆:,得:,即为直线的方程,由,所以直线经过定点,故选:D【点睛】关键点睛:由圆的切线性质得到点、在以为直径的圆上,运用圆与圆的位置关系进行求解是解题的关键.2、B【解析】根据四种命题的结构特征可判断(ⅰ)(ⅳ)的正误,根据全称命题的否定形式可判断(ⅱ)的正误,根据判别式的正误可判断(ⅲ)的正误.【详解】命题“若,则”的否命题”为“若,则”,故(ⅰ)错误.“,”的否定为“,使得”,故(ⅱ)正确,当时,,故有实根,故(ⅲ)正确,“若,则”的否命题为“若,则”,取,则,故命题若,则为假命题,故(ⅳ)错误.故选:B3、A【解析】确定矩形四边的距离均不小于的点构成的区域,由几何概型面积型的公式计算可得结果.【详解】若点与矩形四边的距离均不小于,则其落在如图所示的阴影区域内,所求概率.故选:A.4、D【解析】根据对立事件的定义即可得出结果.【详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为0次或1次出现正面,即“有2次或3次出现反面”故选:D5、B【解析】求出,然后可得答案.【详解】,所以故选:B6、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B7、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.8、A【解析】与已知直线平行,与椭圆相切的直线有二条,一条距离最短,一条距离最长,利用相切,求出直线的常数项,再计算平行线间的距离即可.【详解】设与已知直线平行,与椭圆相切的直线为,则所以所以椭圆上点P到直线的最短距离为故选:A9、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B10、C【解析】根据给定条件建立平面直角坐标系,求出点P的轨迹方程,探求点P与直线AB的最大距离即可计算作答.【详解】依题意,以线段AB的中点为原点,直线AB为x轴建立平面直角坐标系,如图,则,,设,因,则,化简整理得:,因此,点P的轨迹是以点为圆心,为半径的圆,点P不在x轴上时,与点A,B可构成三角形,当点P到直线(轴)的距离最大时,的面积最大,显然,点P到轴的最大距离为,此时,,所以面积的最大值是故选:C11、C【解析】根据题意求得抽样比,再求“史政生”组合中抽取的人数即可.【详解】根据题意,分层抽样的抽样比为,故从“史政生”组合120中,抽取的人数时人.故选:.12、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出函数的导数,再令,即可得出答案.【详解】解:由,得,所以.故答案为:.14、4【解析】根据对数的运算性质得,可得,即数列是以2为公比的等比数列,代入等比数列的通项公式化简可得值.【详解】因为,所以,即数列是以2为公比的等比数列,所以.故答案为:4.【点睛】本题考查等比数列的定义和通项公式以及对数的运算性质,熟练运用相应的公式即可,属于基础题.15、【解析】根据圆锥的侧面展开图是一个半径为2的半圆,由,求得底面半径,进而得到高,再利用锥体的体积公式求解.【详解】设圆锥的母线长为l,高为h,底面半径为r,因为圆锥的侧面展开图是一个半径为2的半圆,所以,解得,所以,所以圆锥的体积为:,故该几何体的体积为,故答案为:16、【解析】设,由余弦定理知,所以,故填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2);【解析】(1)设,将点代入得出的标准方程;(2)联立与直线的方程,得出两点的坐标,进而得出,再结合导数得出的最大值及此时的标准方程.【小问1详解】由题意得:在第一象限的公共点为设,则有:的标准方程为:;【小问2详解】设y=kx+m则①,则②,,,又,由①有代入①有,令,则令,在单调递增,在单调递减,此时,则,代入②得,综上:的最大值2,此时.18、(1)答案见解析(2)【解析】(1),进而分,,三种情况讨论求解即可;(2)由题意知在上恒成立,故令,再根据导数研究函数的最小值,注意到使,进而结合函数隐零点求解即可.【小问1详解】解:①,在上单调增;②,令,单调减单调增;③,单调增单调减.综上,当时,在上单调增;当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】解:由题意知在上恒成立,令,,单调递增∵,∴使得,即单调递减;单调递增,令,则在上单调增,∴实数的取值范围是19、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆心的坐标,求出圆的半径,即可得答案;(2)分切线的斜率存在与不存在两种情况讨论,求出切线的方程,综合可得答案【小问1详解】解:根据题意,因为圆过两点,,设的中点为,则,因为,所以的中垂线方程为,即又因为圆心在直线上,联立,解得,所以圆心,半径,故圆的方程为,【小问2详解】解:当过点P的切线的斜率不存在时,此时直线与圆C相切当过点P的切线斜率k存在时,设切线方程为即(*)由圆心C到切线的距离,可得将代入(*),得切线方程为综上,所求切线方程为或20、(1)或(2)4【解析】(1)设直线方程为,根据所过的点及面积可得关于的方程组,求出解后可得直线方程,我们也可以设直线,利用面积求出后可得直线方程.(2)结合(1)中直线方程的形式利用基本不等式可求面积的最小值.【小问1详解】法一:(1)设直线,则解得或,所以直线或法二:设直线,,则,则,∴或﹣8所以直线或【小问2详解】法一:∵,∴,∴,此时,∴面积的最小值为4,此时直线法二:∵,∴,此时,∴面积的最小值为4,此时直线21、(1)(2)【解析】(1)由正弦定理将边化为角,结合三角函数的两角和的正弦公式,可求得答案;(2)由余弦定理结合基本不等式可求得,再利用三角形面积公式求得答案.【小问1详解】由正弦定理及,得,∵∴,∵,∴【小问2详解】由余弦定理,∴,即,当且仅当时取等号,∴,当且仅当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论