




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市潮阳启声高中2023年数学高二上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知向量,满足条件,则的值为()A.1 B.C.2 D.3.点到直线的距离为2,则的值为()A.0 B.C.0或 D.0或4.数列1,,,的一个通项公式可以是()A. B.C. D.5.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.6.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.47.经过两点直线的倾斜角是()A. B.C. D.8.已知函数,则()A.3 B.C. D.9.已知函数,若,则等于()A. B.1C.ln2 D.e10.在等比数列中,,,则等于()A. B.5C. D.911.等差数列的前项和为,若,,则()A.12 B.18C.21 D.2712.抛物线的焦点到准线的距离为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.14.过点作圆的切线l,直线与l平行,则直线l过定点_________,与l间的距离为____________15.如图,在等腰直角中,,为半圆弧上异于,的动点,当半圆弧绕旋转的过程中,有下列判断:①存在点,使得;②存在点,使得;③四面体的体积既有最大值又有最小值:④若二面角为直二面角,则直线与平面所成角的最大值为45°.其中正确的是______(请填上所有你认为正确的结果的序号).16.滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中“落霞与孤鹜齐飞,秋水共长天一色”而名传千古,流芳后世.如图,在滕王阁旁地面上共线的三点,,处测得阁顶端点的仰角分别为,,.且米,则滕王阁高度___________米.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某微小企业员工的年龄分布茎叶图如图所示:(1)求该公司员工年龄的极差和第25百分位数;(2)从该公司员工中随机抽取一位,记所抽取员工年龄在区间内为事件,所抽取员工年龄在区间内为事件,判断事件与是否互相独立,并说明理由;18.(12分)已知函数.(1)讨论的单调性;(2)当时,求函数在内的零点个数.19.(12分)在数列中,,,数列满足(1)求证:数列是等比数列,并求出数列的通项公式;(2)数列前项和为,且满足,求的表达式;(3)令,对于大于的正整数、(其中),若、、三个数经适当排序后能构成等差数列,求符合条件的数组.20.(12分)已知抛物线上的点P(3,c)),到焦点F的距离为6(1)求抛物线C的方程;(2)过点Q(2,1)和焦点F作直线l交抛物线C于A,B两点,求△PAB的面积21.(12分)已知直线经过点,,直线经过点,且.(1)分别求直线,的方程;(2)设直线与直线的交点为,求外接圆的方程.22.(10分)如图,在几何体ABCEFG中,四边形ACGE为平行四边形,为等边三角形,四边形BCGF为梯形,H为线段BF的中点,,,,,,.(1)求证:平面平面BCGF;(2)求平面ABC与平面ACH夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A2、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.3、C【解析】根据点到直线的距离公式即可得出答案.【详解】解:点到直线的距离为,解得或.故选:C.4、A【解析】根据各项的分子和分母特征进行求解判断即可.【详解】因为,所以该数列的一个通项公式可以是;对于选项B:,所以本选项不符合要求;对于选项C:,所以本选项不符合要求;对于选项D:,所以本选项不符合要求,故选:A5、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.6、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C7、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B8、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B9、D【解析】求导,由得出.【详解】,故选:D10、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D11、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.12、B【解析】由可得抛物线标椎方程为:,由焦点和准线方程即可得解.【详解】由可得抛物线标准方程为:,所以抛物线的焦点为,准线方程为,所以焦点到准线的距离为,故选:B【点睛】本题考了抛物线标准方程,考查了焦点和准线相关基本量,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;14、①.②.##2.4【解析】利用直线与平行,结合切线的性质求出切线的方程,即可确定定点坐标,再利用两条平行线间的距离公式求两线距离.【详解】由题意,直线斜率,设直线的方程为,即∴直线l过定点,由与圆相切,得,解得,∴的方程为,的方程为,则两直线间的距离为故答案为:;.15、①②④【解析】①当D为中点,且A,B,C,D四点共面时,可证得四边形ABCD为正方形即可判断①;②当D在平面ABC内的射影E在线段BC上(不含端点)时,可知平面ABC,可证得平面CDB,即可判断②;③,研究临界值即可判断③;④二面角D-AC-B为直二面角,且D为中点时,直线DB与平面ABC所成角的最大,作图分析验证可判断④.【详解】①当D为中点,且A,B,C,D四点共面时,连结BD,交AC于,则为AC中点,此时,且,所以四边形ABCD为正方形,所以AB//CD,故①正确;②当D在平面ABC内的射影E在线段BC上(不含端点)时,此时有:平面ABC,,又因为,所以平面CDB,所以,故②正确;③,当平面平面ABC,且D为中点时,h有最大值;当A,B,C,D四点共面时h有最小值0,此时为平面图形,不是立体图形,故四面体D-ABC无最小值,故③错误.④二面角D-AC-B为直二面角,且D为中点时,直线DB与平面ABC所成角的最大,取AC中点O,连结DO,BO,则,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以为直线DB与平面ABC所成角,设,则,,所以为等腰直角三角形,所以,直线与平面所成角的最大值为45°,故④正确.故答案为:①②④.16、【解析】设,由边角关系可得,,,在和中,利用余弦定理列方程,结合可解得的值,进而可得长.【详解】设,因为,,,所以,,,.在中,,即①.,在中,,即②,因为,所以①②两式相加可得:,解得:,则,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极差为;第25百分位数为(2)事件和相互独立,理由见解析【解析】(1)根据定义直接计算极差和百分位数得到答案.(2)计算得到,,,即,得到答案.【小问1详解】员工年龄的极差为,,故第25百分位数为.【小问2详解】,,,故,故事件和相互独立.18、(1)当,在单调递增;当,在单调递增,在单调递减.(2)0.【解析】(1)求得,对参数分类讨论,即可由每种情况下的正负确定函数的单调性;(2)根据题意求得,利用进行放缩,只需证即,再利用导数通过证明从而得到恒成立,则问题得解.【小问1详解】以为,其定义域为,又,故当时,,在单调递增;当时,令,可得,且令,解得,令,解得,故在单调递增,在单调递减.综上所述:当,在单调递增;当,在单调递增,在单调递减.【小问2详解】因为,故可得,则,;下证恒成立,令,则,故在单调递减,又当时,,故在恒成立,即;因为,故,令,下证在恒成立,要证恒成立,即证,又,故即证,令,则,令,解得,此时该函数单调递增,令,解得,此时该函数单调递减,又当时,,也即;令,则,令,解得,此时该函数单调递减,令,解得,此时该函数单调递增,又当时,,也即;又,故恒成立,则在恒成立,又,故当时,恒成立,则在上的零点个数是.【点睛】本题考察利用导数研究含参函数的单调性,以及函数零点问题的处理;本题第二问处理的关键是通过分离参数和构造函数,证明恒成立,属综合困难题.19、(1)证明见解析,;(2);(3).【解析】(1)由已知等式变形可得,利用等比数列的定义可证得结论成立,确定等比数列的首项和公比,可求得数列的通项公式;(2)求得,然后分、两种情况讨论,结合裂项相消法可得出的表达式;(3)求得,分、、三种情况讨论,利用奇数与偶数的性质以及整数的性质可求得、的值,综合可得出结论.【小问1详解】解:由可得,,则,,以此类推可知,对任意的,,则,故数列为等比数列,且该数列的首项为,公比为,故,可得.【小问2详解】解:由(1)知,所以,所以,当n=1时,,当时,.因为满足,所以.【小问3详解】解:,、、这三项经适当排序后能构成等差数列,①若,则,所以,,又,所以,,则;②若,则,则,左边为偶数,右边为奇数,所以,②不成立;③若,同②可知③也不成立综合①②③得,20、(1)(2)【解析】(1)根据抛物线的焦半径公式求得,即可得到抛物线方程;(2)写出直线方程,联立抛物线方程,进而求得弦长|AB|,再求出点P到直线的距离,即可求得答案.【小问1详解】由抛物线的焦半径公式可知:,即得,故抛物线方程为:;【小问2详解】点Q(2,1)和焦点作直线l,则l方程为,即,联立抛物线方程:,整理得,设,则,故,点P(3,c)在抛物线上,则,点P到直线l的距离为,故△PAB的面积为.21、(1);(2).【解析】(1)根据两点式即可求出直线l1的方程,根据直线垂直的关系即可求l2的方程;(2)先求出C点坐标,通过三角形的长度关系知道三角形是以AC为斜边长的直角三角形,故AC的中点即为外心,AC即为直径.解析:(1)∵直线经过点,,∴,设直线的方程为,∴,∴.(2),即:,∴,的中点为,∴的外接圆的圆心为,半径为,∴外接圆的方程为:.点睛:这个题目考查的是已知两直线位置关系求参的问题,还考查了三角形外接圆的问题.对于三角形为外接圆,圆心就是各个边的中垂线的交点,钝角三角形外心在三角形外侧,锐角三角形圆心在三角形内部,直角三角形圆心在直角三角形斜边的中点22、(1)证明见解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形内角和可知即,又因为,再根据面面垂直的判定定理,即可证明结果;(2)取BC中点O,由(1)得:平面BCGF,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班冬季交通安全课件
- 行政事业单位合同
- 项目推进时间表与工作计划书
- 泥工装修详细合同
- 大型体育赛事组织协议
- 能源互联网项目战略合作协议
- 农业机械维修技术作业指导书
- 季度运营策略及任务部署会议纪要
- 设计行业设计方案修改免责协议
- 企业互联网应用服务推广合作协议
- 深静脉血栓形成的诊断和治疗指南(第三版)解读资料讲解课件
- 人教版小学一年级美术上册全册课件
- 统编人教部编版道德与法治四年级下册教材解读教师教材培训课件
- 履约专项检查表
- 人教版数学四年级下册第一单元测试卷
- 模具保养记录表
- 2023国家自然科学基金申请书
- 原始狩猎图 (2)
- 《色彩构成——色彩基础知识》PPT课件
- 镀层的结合力
- 霍尼韦尔DDC编程软件(CARE)简介
评论
0/150
提交评论