甘肃省武威市第十八中学2023年高二数学第一学期期末考试试题含解析_第1页
甘肃省武威市第十八中学2023年高二数学第一学期期末考试试题含解析_第2页
甘肃省武威市第十八中学2023年高二数学第一学期期末考试试题含解析_第3页
甘肃省武威市第十八中学2023年高二数学第一学期期末考试试题含解析_第4页
甘肃省武威市第十八中学2023年高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威市第十八中学2023年高二数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.42.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.3.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.4.对于实数a,b,c,下列命题中的真命题是()A.若,则 B.,则C.若,,则, D.若,则5.曲线:在点处的切线方程为A. B.C. D.6.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.等比数列满足,,则()A.11 B.C.9 D.8.在等差数列中,已知,则()A.4 B.8C.3 D.69.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.10.过抛物线焦点的直线与抛物线交于两点,,抛物线的准线与轴交于点,则的面积为()A. B.C. D.11.已知直线,两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则12.已知等比数列中,,则由此数列的奇数项所组成的新数列的前项和为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,点为抛物线上一点,以为圆心的圆经过原点,且与抛物线的准线相切,切点为,线段交抛物线于点,则___________.14.圆与圆的位置关系为______(填相交,相切或相离).15.在2021件产品中有10件次品,任意抽取3件,则抽到次品个数的数学期望的值是______.16.已知数列的各项均为正数,其前项和满足,则__________;记表示不超过的最大整数,例如,若,设的前项和为,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直三棱柱中,,,E、F分别是、的中点,D为棱上的点.(1)证明:;(2)当时,求直线BF与平面DEF所成角的正弦值.18.(12分)某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布表如图所示.组号分组频数频率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?(3)在(2)的前提下,从抽到6名学生中再随机抽取2名被甲考官面试,求这2名学生来自同一组的概率.19.(12分)“绿水青山就是金山银山”,中国一直践行创新、协调、绿色、开放、共享的发展理念,着力促进经济实现高质量发展,决心走绿色、低碳、可持续发展之路.新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向工业部表示,到2025年我国新能源汽车销量占总销量将达20%以上.2021年,某集团以20亿元收购某品牌新能源汽车制造企业,并计划投资30亿元来发展该品牌.2021年该品牌汽车的销售量为10万辆,每辆车的平均销售利润为3000元.据专家预测,以后每年销售量比上一年增加10万辆,每辆车的平均销售利润比上一年减少10%(1)若把2021年看作第一年,则第n年的销售利润为多少亿元?(2)到2027年年底,该集团能否通过该品牌汽车实现盈利?(实现盈利即销售利润超过总投资,参考数据:,,)20.(12分)设点是抛物线上异于原点O的一点,过点P作斜率为、的两条直线分别交于、两点(P、A、B三点互不相同)(1)已知点,求的最小值;(2)若,直线AB的斜率是,求的值;(3)若,当时,B点的纵坐标的取值范围21.(12分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.22.(10分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A2、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.3、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上4、C【解析】对于选项A,可以举反例判断;对于选项BCD可以利用作差法判断得解.【详解】解:A.若,则不一定成立.如:.所以该选项错误;B.,所以,所以该选项错误;C.,所以该选项正确;D.,所以该选项错误.故选:C5、A【解析】因为,所以曲线在点(1,0)处的切线的斜率为,所以切线方程为,即,选A6、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.7、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B8、B【解析】根据等差数列的性质计算出正确答案.【详解】由等差数列的性质可知,得.故选:B9、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.10、B【解析】画出图形,利用已知条件结合抛物线的定义求解边长CF,BK,然后求解三角形的面积即可【详解】如图,设拋物线的准线为,过作于,过作于,过作于,设,则根据抛物线的定义可得,,,的面积为,故选:.11、A【解析】根据线面、面面位置关系有关知识对选项逐一分析,由此确定正确选项.【详解】对于A选项,根据面面垂直的判定定理可知,A选项正确,对于B选项,当,时,和可能相交,B选项错误,对于C选项,当,时,可能含于,C选项错误,对于D选项,当,时,可能含于,D选项错误.故选:A12、B【解析】确实新数列是等比数列及公比、首项后,由等比数列前项和公式计算,【详解】由题意,新数列为,所以,,前项和为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析可知为等腰三角形,可得出,将点的坐标代入抛物线的方程,可求得的值,可得出抛物线的方程以及点的坐标,求出点的坐标,设点,其中,分析可知,利用平面向量共线的坐标表示求出的值,进而可求得结果.【详解】由抛物线的定义结合已知条件可知,则为等腰三角形,易知抛物线的焦点为,故,即点,因为点在抛物线上,则,解得,所以,抛物线的方程为,故点、,因为以点为圆心,为半径的圆与直线相切于点,则,设点,其中,,,由题意可知,则,整理可得,解得,因此,.故答案为:.14、相交【解析】求两圆圆心距,并与半径之和、半径之差的绝对值比较即可.【详解】圆的圆心为,半径为,圆的圆心为,半径为,∵,∴两圆相交.故答案为:相交.15、【解析】设抽到的次品的个数为,则,求出对应的概率即得解.【详解】解:设抽到的次品的个数为,则,所以所以抽到次品个数的数学期望的值是故答案为:16、①.;②.60.【解析】先根据并结合等差数列的定义求出;然后讨论n的取值范围,讨论出分别取1,2,3,4,5的情况,进而求出.【详解】由题意,,n=1时,,满足,时,,于是,,因为,所以.所以,是1为首项,2为公差的等差数列,所以.若,即时,,若,则时,,若,则时,,若,则时,,若,则或22时,,于是,.故答案为:2n-1;60.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由题意建立如图所示的空间直角坐标系,利用空间向量证明即可,(2)求出平面DEF的法向量,利用空间向量求解【小问1详解】证明:因为三棱柱是直三棱柱,且,所以两两垂直,所以以为原点,以所在的直线分别为轴建立空间直角坐标系,则,,设,则,所以,所以,所以【小问2详解】因为,所以,所以,设平面一个法向量为,则,令,则,设直线BF与平面DEF所成角为,则,所以直线BF与平面DEF所成角的正弦值为18、(1),,(2)第三组应抽人,第四组应抽人,第五组应抽人(3)【解析】(1)根据频率分布表的数据求出b,c,d的值;(2)三个组共有60人,从而利用分层抽样抽样方法抽取6名学生第三组应抽3人,第四组应抽2人,第五组应抽1人;(3)记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,利用列举法结合概率公式得出答案.【小问1详解】由题意得,,【小问2详解】三个组共有60人,所以第三组应抽人,第四组应抽人,第五组应抽人.【小问3详解】记第三组抽出的3人分别为,第四组抽出的2人分别为,第五组抽出的1人为,从这6人中随机抽取2人,基本事件包含,共15个基本事件.其中2人来自同一组的情况有,共4种.所以,2人来自同一组的概率为.19、(1)亿元(2)该集团能通过该品牌汽车实现盈利【解析】(1)由题意可求得第n年的销售量,第n年每辆车的平均销售利润,从而可求出第n年的销售利润,(2)利用错位相减法求出到2027年年底销售利润总和,再与总投资额比较即可【小问1详解】设第n年的销售量为万辆,则该汽车的年销售量构成首项为10,公差为10的等差数列,所以,设第n年每辆车的平均销售利润为元,则每辆汽车的平均销售利润构成首项为3000,公比为0.9的等比数列,所以,记第n年的销售利润为,则万元;即第n年的销售利润为亿元【小问2详解】到2027年年底,设销售利润总和为S亿元,则①,②,①﹣②得亿元,而总投资为亿元,因为,则到2027年年底,该集团能通过该品牌汽车实现盈利20、(1);(2)3;(3);【解析】(1)根据两点之间的距离公式,结合点坐标满足抛物线,构造关于的函数关系,求其最值即可;(2)根据题意,求得点的坐标,设出的直线方程,联立抛物线方程,利用韦达定理求得点坐标,同理求得点坐标,再利用斜率计算公式求得即可;(3)根据题意,求得点的坐标,利用坐标转化,求得关于的一元二次方程,利用其有两个不相等的实数根,即可求得的取值范围.【小问1详解】因为点在抛物线上,故可得,又,当且仅当时,取得最小值.故的最小值为.【小问2详解】当时,故可得,即点的坐标为;则的直线方程为:,联立抛物线方程:,可得:,故可得,解得:,又故可得同理可得:,又的斜率,即.故为定值.【小问3详解】当时,可得,此时,因为两点在抛物线上,故可得,,因为,故可得,整理得:,,因为三点不同,故可得,则,即,,此方程可以理解为关于的一元二次方程,因为,故该方程有两个不相等的实数根,,即,故,则,解得或.故点纵坐标的取值范围为.【点睛】本题考察直线与抛物线相交时范围问题,定值问题,解决问题的关键是合理且充分的利用韦达定理,本题计算量较大,属综合困难题.21、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入椭圆方程可求得结果,②若直线不与轴垂直,设直线的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论