安徽省宿州市时村中学2024届高二上数学期末达标检测试题含解析_第1页
安徽省宿州市时村中学2024届高二上数学期末达标检测试题含解析_第2页
安徽省宿州市时村中学2024届高二上数学期末达标检测试题含解析_第3页
安徽省宿州市时村中学2024届高二上数学期末达标检测试题含解析_第4页
安徽省宿州市时村中学2024届高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省宿州市时村中学2024届高二上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,、分别为椭圆的左、右焦点,为椭圆上的点,是线段上靠近的三等分点,为正三角形,则椭圆的离心率为()A. B.C. D.2.已知空间向量,,则()A. B.C. D.3.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.214.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.5.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.6.已知抛物线的焦点坐标是,则抛物线的标准方程为A. B.C. D.7.公比为的等比数列,其前项和为,前项积为,满足,.则下列结论正确的是()A.的最大值为B.C.最大值为D.8.设斜率为2的直线l过抛物线()的焦点F,且和y轴交于点A,若(O为坐标原点)的面积为4,则抛物线方程为()A. B.C. D.9.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.11.若直线与互相平行,且过点,则直线的方程为()A. B.C. D.12.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设抛物线的焦点为,直线过焦点,且与抛物线交于两点,,则__________14.动点M在圆上移动,则M与定点连线的中点P的轨迹方程为___________.15.若不等式的解集是,则的值是___________.16.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.18.(12分)在平面直角坐标系xOy中,点A(2,4),直线l:,设圆C的半径为1,圆心在直线l上,圆心也在直线上.(1)求圆C的方程;(2)过点A作圆C的切线,求切线的方程.19.(12分)求满足下列条件的圆锥曲线的标准方程:(1)已知椭圆的焦点在x轴上且一个顶点为,离心率为;(2)求一个焦点为,渐近线方程为的双曲线的标准方程;(3)抛物线,过其焦点斜率为1的直线交抛物线于A、B两点,且线段AB的中点的纵坐标为2.20.(12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大21.(12分)如图所示,在四棱锥中,平面,底面是等腰梯形,.且(1)证明:平面平面;(2)若,求平面与平面的夹角的余弦值22.(10分)已知定义域为的函数是奇函数,其中为指数函数且的图象过点(1)求的表达式;(2)若对任意的.不等式恒成立,求实数的取值范围;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据椭圆定义及正三角形的性质可得到\,再在中运用余弦定理得到、的关系,进而求得椭圆的离心率【详解】由椭圆的定义知,,则,因为正三角形,所以,在中,由余弦定理得,则,,故选:D【点睛】本题考查椭圆的离心率的求解,考查考生的逻辑推理能力及运算求解能力,属于中等题.2、C【解析】直接利用向量的坐标运算法则求解即可【详解】因为,,所以,故选:C3、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A4、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】5、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.6、D【解析】根据抛物线的焦点坐标得到2p=4,进而得到方程.【详解】抛物线的焦点坐标是,即p=2,2p=4,故得到方程为.故答案为D.【点睛】这个题目考查了抛物线的标准方程的求法,题目较为简单.7、A【解析】根据已知条件,判断出,即可判断选项D,再根据等比数列的性质,判断,,由此判断出选项A,B,C.【详解】根据题意,等比数列满足条件,,,若,则,则,,则,这与已知条件矛盾,所以不符合题意,故选项D错误;因为,,,所以,,,则,,数列前2021项都大于1,从第2022项开始都小于1,因此是数列中的最大值,故选项A正确由等比数列的性质,,故选项B不正确;而,由以上分析可知其无最大值,故C错误;故选:A8、B【解析】根据抛物线的方程写出焦点坐标,求出直线的方程、点的坐标,最后根据三角形面积公式进行求解即可.【详解】抛物线的焦点的坐标为,所以直线的方程为:,令,解得,因此点的坐标为:,因为面积为4,所以有,即,,因此抛物线的方程为.故选:B.9、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A10、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:11、D【解析】由题意设直线的方程为,然后将点代入直线中,可求出的值,从而可得直线的方程【详解】因为直线与互相平行,所以设直线的方程为,因为直线过点,所以,得,所以直线的方程为,故选:D12、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】抛物线焦点为,由于直线和抛物线有两个交点,故直线斜率存在.根据抛物线的定义可知,故的纵坐标为,横坐标为.不妨设,故直线的方程为,联立直线方程和抛物线方程,化简得,解得,故.所以.【点睛】本小题主要考查直线和抛物线的位置关系,考查抛物线的几何性质和定义.考查三角形面积公式.在解题过程中,先根据题目所给抛物线的方程求得焦点的坐标,然后利用抛物线的定义:到定点的距离等于到定直线的距离,由此求得点的坐标,进而求得直线的方程,联立直线方程和抛物线方程求得点的坐标.最后求得面积比.14、##【解析】设,中点,根据中点坐标公式求出,代入圆的标准方程即可得出结果.【详解】设,中点,则,即,因为在圆上,代入得故答案为:.15、【解析】利用和是方程的两根,再利用根与系数的关系即可求出和的值,即可得的值.【详解】由题意可得:方程的两根是和,由根与系数的关系可得:,所以,所以,故答案为:16、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:15三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2详解】对圆:,令,则,不妨设,则,设点,因为点在圆内,故;因为是、的等比中项,故可得:,则,整理得;由可得,解得,则.故答案为:.18、(1)(2)或【解析】(1)直接求出圆心的坐标,写出圆的方程;(2)分斜率存在和斜率不存在进行分类讨论,利用几何法列方程,即可求解.【小问1详解】由圆心C在直线l:上可设:点,又C也在直线上,∴,∴又圆C的半径为1,∴圆C的方程为.【小问2详解】当直线垂直于x轴时,与圆C相切,此时直线方程为.当直线与x轴不垂直时,设过A点的切线方程为,即,则,解得.此时切线方程,.综上所述,所求切线为或19、(1)(2)(3)【解析】(1)设椭圆的标准方程为,根据题意,进而结合求解即可得答案;(2)设双曲线的方程为,进而结合题意得,,再结合解方程即可得答案;、(3)根据题意设直线的方程为,进而与抛物线联立方程并消去得,再结合韦达定理得,进而得答案.【小问1详解】解:根据题意,设椭圆的标准方程为,因为顶点为,离心率为,所以,所以,所以椭圆的方程为【小问2详解】解:因为双曲线的一个焦点为,设双曲线的方程为,因为渐近线方程为,所以,因为所以,所以双曲线的标准方程为【小问3详解】解:由题知抛物线的焦点为,因为过抛物线焦点斜率为1的直线交抛物线于A、B两点,所以直线的方程为,所以联立方程,消去得,设,所以,因为线段AB的中点的纵坐标为2,所以,解得.所以抛物线的标准方程为.20、(1)V(r)=(300r﹣4r3)(0,5)(2)见解析【解析】(1)先由圆柱的侧面积及底面积计算公式计算出侧面积及底面积,进而得出总造价,依条件得等式,从中算出,进而可计算,再由可得;(2)通过求导,求出函数在内的极值点,由导数的正负确定函数的单调性,进而得出取得最大值时的值.(1)∵蓄水池的侧面积的建造成本为元,底面积成本为元∴蓄水池的总建造成本为元所以即∴∴又由可得故函数的定义域为(2)由(1)中,可得()令,则∴当时,,函数为增函数当,函数为减函数所以当时该蓄水池的体积最大考点:1.函数的应用问题;2.函数的单调性与导数;2.函数的最值与导数.21、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理可得平面,再由面面垂直的判定定理可得平面平面;(2)以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立空间直角坐标系.求出平面的一个法向量、平面的法向量,由二面角的空间向量求法可得答案.【小问1详解】因为四边形是等腰梯形,,所以,所以,即因为平面,所以,又因为,所以平面,因为平面,所以平面平面【小问2详解】以为坐标原点,以,所在直线分别为,轴,以过点垂直于平面的直线为轴建立如图所示的空间直角坐标系设,则,所以,,,由(1)可知平面的一个法向量为设平面的法向量为,因为,,所以得令,则,,所以,则,所以平面与平面的夹角的余弦值为.22、(1);(2).【解析】(1)设(且),因为的图象过点,求得a的值,再根据函数f(x)是奇函数,利用f(0)=0即可求得n的值,得到f(x)的解析式,检验是奇函数即可;(2)将分式分离常数后,利用指数函数的性质可以判定f(x)在R上单调递减,进而结合奇函数的性质将不等式转化为二次不等式,根据二次函数的图象和性质,求得对于对任意的恒成立时a的取值范围即可.【详解】解:(1)由题意,设(且),因为的图象过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论