版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省禄丰县广通中学高二数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l经过,两点,则直线l的倾斜角是()A.30° B.60°C.120° D.150°2.双曲线的焦点坐标是()A. B.C. D.3.已知正数x,y满足,则取得最小值时()A. B.C.1 D.4.已知椭圆的中心为,一个焦点为,在上,若是正三角形,则的离心率为()A. B.C. D.5.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.6.给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题7.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.8.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.9.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.800010.在等差数列中,已知,,则使数列的前n项和成立时n的最小值为()A.6 B.7C.9 D.1011.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.12.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数处取极值,则___________14.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来1524石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为_______石15.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________16.已知双曲线的左、右焦点分别为,右顶点为,为双曲线上一点,且,线段的垂直平分线恰好经过点,则双曲线的离心率为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值18.(12分)已知数列中,,___________,其中.(1)求数列的通项公式;(2)设,求证:数列是等比数列;(3)求数列的前n项和.从①前n项和,②,③且,这三个条件中任选一个,补充在上面的问题中并作答.19.(12分)如图,第1个图形需要4根火柴,第2个图形需要7根火柴,,设第n个图形需要根火柴(1)试写出,并求;(2)记前n个图形所需的火柴总根数为,设,求数列的前n项和20.(12分)已知椭圆的左焦点为,点到短袖的一个端点的距离为.(1)求椭圆的方程;(2)过点作斜率为的直线,与椭圆交于,两点,若,求的取值范围.21.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点22.(10分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设直线l的倾斜角为,由题意可得直线l的斜率,即,∵,∴直线l的倾斜角为,故选:.2、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.3、B【解析】根据基本不等式进行求解即可.【详解】因为正数x,y,所以,当且仅当时取等号,即时,取等号,而,所以解得,故选:B4、D【解析】根据是正三角形可得的坐标,代入方程后可求离心率.【详解】不失一般性,可设椭圆的方程为:,为半焦距,为右焦点,因为且,故,故,,整理得到,故,故选:D.5、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.6、D【解析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,,所以说法不正确;D选项:“在中,若,则是锐角三角形”是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题“若,则”的否命题是“若,则”,所以A选项不正确;双曲线的离心率大于,即,解得,则“”是“双曲线的离心率大于”的充分不必要条件,所以B选项不正确;命题“,”的否定是“,”,所以C选项不正确;命题“在中,若,则是锐角三角形”,在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.7、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D8、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.9、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.10、D【解析】根据等差数列的性质及等差中项结合前项和公式求得,,从而得出结论.【详解】,,,,,,,使数列的前n项和成立时n的最小值为10,故选:D.11、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.12、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】=.因为f(x)在1处取极值,所以1是f′(x)=0的根,将x=1代入得a=3.故答案为3.考点:利用导数研究函数的极值14、168石【解析】由题意,得这批米内夹谷约为石考点:用样本估计总体15、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).16、【解析】在中求出,再在中求出,即可得到的齐次式,化简即可求出离心率【详解】设双曲线:,,不妨设为双曲线右支上一点因为线段的垂直平分线恰好经过点,且,所以,在中,,所以,,在中,,所以,,因此,,化简得,,即,而,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.18、(1)(2)见解析(3)【解析】(1)选①,根据与的关系即可得出答案;选②,根据与的关系结合等差数列的定义即可得出答案;选③,利用等差中项法可得数列是等差数列,再求出公差,即可得解;(2)求出数列的通项公式,再根据等比数列的定义即可得证;(3)求出数列的通项公式,再利用错位相减法即可得出答案.【小问1详解】解:选①,当时,,当时,也成立,所以;选②,因为,所以,所以数列是以为公差的等差数列,所以;选③且,因为,所以数列是等差数列,公差,所以;【小问2详解】解:由(1)得,则,所以数列是以为首项,为公比的等比数列;【小问3详解】解:,,①,②由①②得,所以.19、(1),;(2).【解析】(1)根据题设找到规律写出,由等差数列的定义求.(2)由等差数列前n项和求,再利用裂项相消法求.【小问1详解】由题意知:,,,,可得每增加一个正方形,火柴增加3根,即,所以数列是以4为首项,以3为公差的等差数列,则.【小问2详解】由题意可知,,所以,则,所以,,即20、(1)(2)或【解析】(1)根据焦点坐标可得,根据点到短袖一个端点的距离为,然后根据即可;(2)先设联立直线与椭圆的方程,然后根据韦达定理得到,两点的坐标关系,然后根据建立关于直线的斜率的不等式,解出不等式即可.【小问1详解】根据题意,已知椭圆的左焦点为,则有:点到短袖一个端点的距离为,则有:则有:故椭圆的方程为:【小问2详解】设过点作斜率为的直线的方程为:联立直线与椭圆的方程可得:则有:,直线过点,所以恒成立,不妨设,两点的坐标分别为:,则有:又且则有:将,代入后可得:若,则有:解得:或21、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。22、(1)证明见解析;(2);【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗设备租赁解除律师函
- 能源供应合同备案制度
- 建筑监理基础施工协议
- 农业创新园区停车场改造合同
- 钻孔工程安全生产考核合同
- 环保工程木地板工程合同
- 医院管理团队聘用合同
- 租用合同样本:消防设备
- 护理科研项目管理与实施
- 药品采购绩效评估体系
- 锅炉控制器modbus协议支持说明
- 粉末涂料有限公司危废库安全风险分级管控清单
- 安全生产信息管理制度全
- 住宅物业危险源辨识评价表
- 世界主要国家洲别、名称、首都、代码、区号、时差汇总表
- 2023学年广东省广州市越秀区铁一中学九年级(上)物理期末试题及答案解析
- 《报告文学研究》(07562)自考考试复习题库(含答案)
- 安全操作规程
- 电源日常点检记录表
- 人教版小学三年级语文上册期末测试卷.及答题卡2
- 钢轨接头位置及接头联结形式
评论
0/150
提交评论