版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆吐鲁番市高昌区二中数学高二上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则点到平面的距离为()A. B.C. D.2.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.3.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.94.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.5.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.6.若不等式在上有解,则的最小值是()A.0 B.-2C. D.7.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于58.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.9.曲线在点处的切线方程是()A. B.C. D.10.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列11.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.8012.已知函数的导数为,则等于()A.0 B.1C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____14.设P为圆上一动点,Q为直线上一动点,O为坐标原点,则的最小值为___15.在的展开式中项的系数为______.(结果用数值表示)16.已知,,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线经过两条直线和的交点,且与直线垂直(1)求直线的一般式方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程18.(12分)已知等差数列满足,(1)求数列的通项公式及前10项和;(2)等比数列满足,,求和:19.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由20.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标21.(12分)已知抛物线的焦点为,点在抛物线上,且点的纵坐标为4,(1)求抛物线的方程;(2)过点作直线交抛物线于两点,试问抛物线上是否存在定点使得直线与的斜率互为倒数?若存在求出点的坐标,若不存在说明理由22.(10分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A2、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B3、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题4、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B5、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.6、D【解析】将题设条件转化为在上有解,然后求出的最大值即可得解.【详解】不等式在上有解,即为在上有解,设,则在上单调递减,所以,所以,即,故选:D.【点睛】本题主要考查二次不等式能成立问题,可以选择分离参数转化为最值问题,也可以进行分情况讨论.7、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题8、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.9、B【解析】求导,得到曲线在点处的斜率,写出切线方程.【详解】因为,所以曲线在点处斜率为4,所以曲线在点处的切线方程是,即,故选:B10、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.11、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C12、A【解析】先对函数求导,然后代值计算即可【详解】因为,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】直接利用曲线的性质,对称性的应用可判断①②;求出可判断③;联立方程,解方程组可判断④⑤的结论【详解】对于①,将方程中的x换为﹣x,y换为﹣y,方程不变,曲线C关于原点对称,故①正确;对于②,将方程中的x换为﹣y,把y换成﹣x,方程不变,曲线C关于直线x±y=0对称,故②正确;对于③,由方程得,故曲线C不是封闭图形,故③错误;对于④,曲线C:,不是封闭图形,联立整理可得:,方程无解,故④正确;对于⑤,曲线C与曲线D:由于,解得,根据对称性,可得公共点为,故曲线C与曲线D有四个交点,这4点构成正方形,故⑤正确故答案为:414、4【解析】取点,可得,从而,,从而可求解【详解】解:由圆,得圆心,半径,取点A(3,0),则,又,∴,∴,∴,当且仅当直线时取等号故答案为:15、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.16、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意求出两直线的交点,再求出所求直线的斜率,用点斜式写出直线的方程;(2)根据题意求出圆的半径,由圆心写出圆的标准方程【小问1详解】解:由题意知,解得,直线和的交点为;设直线的斜率为,与直线垂直,;直线的方程为,化为一般形式为;【小问2详解】解:设圆的半径为,则圆心为到直线的距离为,由垂径定理得,解得,圆的标准方程为18、(1),175(2)【解析】(1)由已知结合等差数列的通项公式先求出公差,然后结合通项公式及求和公式即可求解;(2)结合等比数列的性质先求出,然后结合等比数列性质及求和公式可求【小问1详解】解:等差数列满足,,所以,,;【小问2详解】解:因为等比数列满足,,所以或(舍去),由等比数列的性质可知,是以1为首项,4为公比的等比数列,所以,所以19、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.20、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解】设的坐标为,,解得,.故的坐标为.21、(1)(2)存在,【解析】(1)利用抛物线的焦半径公式求得点的横坐标,进而求得p,可得答案;(2)根据题意可设直线方程,和抛物线方程联立,得到根与系数的关系式,利用直线与的斜率互为倒数列出等式,化简可得结论.【小问1详解】(1)则,,,,故C的方程为:;【小问2详解】假设存在定点,使得直线与的斜率互为倒数,由题意可知,直线AB的斜率存在,且不为零,,,,,所以Δ>0y1+即或,,,则,,使得直线与的斜率互为倒数.22、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度木制托盘环保认证与全球供应链采购合同3篇
- 2024-2030年中国力传感器行业市场运营模式及未来发展动向预测报告
- 2024-2030年中国刺五加甙项目申请报告
- 2024年度软件许可合同技术支持服务内容3篇
- 2024-2030年中国冶金非标设备项目可行性研究报告
- 2024-2030年中国冰糖市场产销量预测及创新融资渠道分析报告
- 大理州弥渡县人民医院招聘笔试真题2023
- 2024-2030年中国全棉高支纱行业发展需求及投资战略研究报告
- 2024-2030年中国克百威颗粒剂境外融资报告
- 2024年度租赁合同:办公设备长期租赁
- 江苏开放大学本科财务管理专业060111马克思主义基本原理期末试卷
- 商务英语写作1(山东联盟)智慧树知到期末考试答案章节答案2024年山东管理学院
- 2024年辽宁农业职业技术学院单招职业适应性测试题库审定版
- 遇见朗读者智慧树知到期末考试答案章节答案2024年哈尔滨师范大学
- 中班音乐《小看戏》课件
- 电大财务大数据分析编程作业2
- 葡萄糖醛酸在药物开发中的应用
- 体温表水银泄露的应急预案
- 导尿管相关尿路感染预防与控制技术指南(试行)-解读
- 餐厅、食堂餐饮服务方案(技术标)
- (正式版)JBT 7122-2024 交流真空接触器 基本要求
评论
0/150
提交评论