2024届四川省成都市成外高二上数学期末学业质量监测试题含解析_第1页
2024届四川省成都市成外高二上数学期末学业质量监测试题含解析_第2页
2024届四川省成都市成外高二上数学期末学业质量监测试题含解析_第3页
2024届四川省成都市成外高二上数学期末学业质量监测试题含解析_第4页
2024届四川省成都市成外高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市成外高二上数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线(,)的左、右焦点分别为,,.若双曲线M的右支上存在点P,使,则双曲线M的离心率的取值范围为()A. B.C. D.2.某商场为了解销售活动中某商品销售量与活动时间之间的关系,随机统计了某次销售活动中的商品销售量与活动时间,并制作了下表:活动时间销售量由表中数据可知,销售量与活动时间之间具有线性相关关系,算得线性回归方程为,据此模型预测当时,的值为()A B.C. D.3.已知为虚数单位,复数是纯虚数,则()A. B.4C.3 D.24.斗笠,用竹篾夹油纸或竹叶粽丝等编织,是人们遮阳光和雨的工具.某斗笠的三视图如图所示(单位:),若该斗笠水平放置,雨水垂直下落,则该斗笠被雨水打湿的面积为()A. B.C. D.5.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直6.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解7.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.28.函数的最小值为()A. B.1C.2 D.e9.一道数学试题,甲、乙两位同学独立完成,设命题是“甲同学解出试题”,命题是“乙同学解出试题”,则命题“至少一位同学解出试题”可表示为()A. B.C. D.10.设函数是定义在上的奇函数,且,当时,有恒成立.则不等式的解集为()A. B.C. D.11.已知,表示两条不同的直线,表示平面.下列说法正确的是A.若,,则B.若,,则C.若,,则D.若,,则12.已知,则下列说法中一定正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为F,A为抛物线C上一点.以F为圆心,FA为半径的圆交抛物线C的准线于B,D两点,A,F,B三点共线,且,则______14.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.15.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________16.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如下图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD的边长为4,取正方形ABCD各边的四等分点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的四等分点M,N,P,Q,作第3个正方形MNPQ,依此方法一直继续下去,就可以得到阴影部分的图案.如图(2)阴影部分,设直角三角形AEH面积为,直角三角形EMQ面积为,后续各直角三角形面积依次为,…,,若数列的前n项和恒成立,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题方程表示中心在原点,焦点在坐标轴上的双曲线;命题,,若“”为假命题,“”为真命题,求实数的取值范围.18.(12分)已知椭圆的离心率为,且经过点.(1)求椭圆的标准方程;(2)已知,经过点的直线与椭圆交于、两点,若原点到直线的距离为,且,求直线的方程.19.(12分)在直角坐标系中,曲线C的参数方程为,(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的极坐标方程;(2)已知直线与曲线C相交于A,B两点,求.20.(12分)某地区2021年清明节前后3天每天下雨的概率为50%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率.用随机数x(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;(2)从2012年到2020年该地区清明节当天降雨量(单位:)如表:(其中降雨量为0表示没有下雨).时间2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221经研究表明:从2012年至2021年,该地区清明节有降雨的年份的降雨量y与年份t成线性回归,求回归直线方程,并计算如果该地区2021年()清明节有降雨的话,降雨量为多少?(精确到0.01)参考公式:,参考数据:,,,21.(12分)在等差数列中,记为数列的前项和,已知:.(1)求数列的通项公式;(2)求使成立的的值.22.(10分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用三角形正弦定理结合,用a,c表示出,再由点P的位置列出不等式求解即得.【详解】依题意,点P不与双曲线顶点重合,在中,由正弦定理得:,因,于是得,而点P在双曲线M的右支上,即,从而有,点P在双曲线M的右支上运动,并且异于顶点,于是有,因此,,而,整理得,即,解得,又,故有,所以双曲线M的离心率的取值范围为.故选:A2、C【解析】求出样本中心点的坐标,代入回归直线方程,求出的值,再将代入回归方程即可得解.【详解】由表格中的数据可得,,将样本中心点的坐标代入回归直线方程可得,解得,所以,回归直线方程为,故当时,.故选:C.3、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由纯虚数,∴,解得:,则,故选:C4、A【解析】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,则所求面积积为圆锥的侧面积与圆环的面积之和【详解】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,所以该斗笠被雨水打湿的面积为,故选:A5、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C6、C【解析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.7、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B8、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B9、D【解析】根据“或命题”的定义即可求得答案.【详解】“至少一位同学解出试题”的意思是“甲同学解出试题,或乙同学解出试题”.故选:D.10、B【解析】根据当时,可知在上单调递减,结合可确定在上的解集;根据奇偶性可确定在上的解集;由此可确定结果.【详解】,当时,,在上单调递减,,,在上的解集为,即在上的解集为;又为上的奇函数,,为上的偶函数,在上的解集为,即在上的解集为;当时,,不合题意;综上所述:的解集为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题,关键是能够通过构造函数的方式,确定所构造函数的单调性和奇偶性,进而根据零点确定不等式的解集.11、B【解析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断【详解】A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,,由线面垂直的性质定理可知,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错故选B【点睛】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟定理是解题的关键,注意观察空间的直线与平面的模型12、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得抛物线的焦点和准线方程,由,,三点共线,推得,由三角形的中位线性质可得到准线的距离,可得的值【详解】抛物线的焦点为,,准线方程为,因为,,三点共线,可得为圆的直径,如图示:设准线交x轴于E,所以,则,由抛物线的定义可得,又是的中点,所以到准线的距离为,故答案为:214、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.15、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:16、或【解析】先求正方形边长的规律,再求三角形面积的规律,从而就可以求和了,再解不等式即可求解.【详解】由题意,由外到内依次各正方形的边长分别为,则,,……,,于是数列是以4为首项,为公比的等比数列,则.由题意可得:,即……,于是.,故解得或.故答案为:或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】求出当命题、分别为真命题时实数的取值范围,分析可知、中一真一假,分真假、假真两种情况讨论,求出对应的实数的取值范围,综合可得结果.【详解】解:若为真命题,则,即,解得,若为真命题,则,解得,因为“”为假命题,“”为真命题,则、中一真一假,若真假,则,可得,若假真,则,此时.综上所述,实数的范围为.18、(1);(2).【解析】(1)由已知条件可得出关于、、的方程组,求出这三个量的值,由此可得出椭圆的标准方程;(2)分析可知直线的斜率存在且不为零,设直线的方程为,由点到直线的距离公式可得出,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,代入韦达定理求出、的值,由此可得出直线的方程.【详解】(1)设椭圆的焦距为,则,解得,因此,椭圆的标准方程为;(2)若直线斜率不存在,则直线过原点,不合乎题意.所以,直线的斜率存在,设斜率为,设直线方程为,设、,原点到直线的距离为,,即①.联立直线与椭圆方程可得,则,则,由韦达定理可得,.,则为线段的中点,所以,,,得,,所以,,整理可得,解得,即,,因此,直线的方程为或.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为、;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;(3)列出韦达定理;(4)将所求问题或题中的关系转化为、的形式;(5)代入韦达定理求解.19、(1);(2).【解析】(1)首先将圆的参数方程华为普通方程,再转化为极坐标方程即可.(2)首先联立得到,再求的长度即可.【详解】(1)将曲线C的参数方程,(为参数)化为普通方程,得,极坐标方程为.(2)联立方程组,消去得,设点A,B对应的极径分别为,,则,,所以.20、(1),;(2);该地区2020年清明节有降雨的话,降雨量为20.2mm【解析】(1)利用概率模拟求概率;(2)套用公式求回归直线方程即可.【详解】解:(1)由题意可知,,解得,即表示下雨,表示不下雨,所给的20组数据中714,740,491,272,073,445,435,027,共8组表示3天中恰有两天下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论