2024届江苏省南京市江宁区高级中学数学高二上期末学业质量监测模拟试题含解析_第1页
2024届江苏省南京市江宁区高级中学数学高二上期末学业质量监测模拟试题含解析_第2页
2024届江苏省南京市江宁区高级中学数学高二上期末学业质量监测模拟试题含解析_第3页
2024届江苏省南京市江宁区高级中学数学高二上期末学业质量监测模拟试题含解析_第4页
2024届江苏省南京市江宁区高级中学数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市江宁区高级中学数学高二上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,过抛物线的焦点的直线交抛物线于点,,交其准线于点,准线与对称轴交于点,若,且,则此抛物线的方程为()A. B.C. D.2.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.643.点到直线的距离为A.1 B.2C.3 D.44.若直线与曲线只有一个公共点,则m的取值范围是()A. B.C.或 D.或5.若,则=()A.244 B.1C. D.6.已知为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.若,则B.若,则C.若,则D.若,则7.设函数,,,则()A. B.C. D.8.若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或 B.或2C.或 D.或29.已知,,,,则()A. B.C. D.10.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.800011.已知集合,集合或,是实数集,则()A. B.C. D.12.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在上是增函数,则实数的取值范围是________14.写出一个数列的通项公式____________,使它同时满足下列条件:①,②,其中是数列的前项和.(写出满足条件的一个答案即可)15.已知点P为椭圆上的任意一点,点,分别为该椭圆的左、右焦点,则的最大值为______________.16.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心为,一条直径的两个端点分别在x轴和y轴上(1)求圆C的方程;(2)直线l:与圆C相交于M,N两点,P(异于点M,N)为圆C上一点,求△PMN面积的最大值18.(12分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.19.(12分)已知双曲线的右焦点与抛物线的焦点相同,且过点.(1)求双曲线渐近线方程;(2)求抛物线的标准方程.20.(12分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值21.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值22.(10分)已知抛物线的焦点到准线的距离为,过点的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据抛物线定义,结合三角形相似以及已知条件,求得,则问题得解.【详解】根据题意,过作垂直于准线,垂足为,过作垂直于准线,垂足为,如下所示:因为,又//,,则,故可得,又△△,则,即,解得,故抛物线方程为:.故选:.2、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A3、B【解析】直接利用点到直线的距离公式得到答案.【详解】,答案为B【点睛】本题考查了点到直线的距离公式,属于简单题.4、D【解析】根据曲线方程的特征,发现曲线表示在轴上方的图象,画出图形,根据图形上直线的三个特殊位置,当已知直线位于直线位置时,把已知直线的解析式代入椭圆方程中,消去得到关于的一元二次方程,由题意可知根的判别式等于0即可求出此时对应的的值;当已知直线位于直线及直线的位置时,分别求出对应的的值,写出满足题意得的范围,综上,得到所有满足题意得的取值范围【详解】根据曲线,得到,解得:;,画出曲线的图象,为椭圆在轴上边的一部分,如图所示:当直线在直线的位置时,直线与椭圆相切,故只有一个交点,把直线代入椭圆方程得:,得到,即,化简得:,解得或(舍去),则时,直线与曲线只有一个公共点;当直线在直线位置时,直线与曲线刚好有两个交点,此时,当直线在直线位置时,直线与曲线只有一个公共点,此时,则当时,直线与曲线只有一个公共点,综上,满足题意得的范围是或故选:D5、D【解析】分别令代入已知关系式,再两式求和即可求解.【详解】根据,令时,整理得:令x=2时,整理得:由①+②得,,所以.故选:D.6、D【解析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A,若,则或异面,故该选项错误;B,若,则或相交,故该选项错误;C,若,则α,β不一定垂直,故该选项错误;D,若,则利用面面垂直的性质可得,故该选项正确.故选:D.7、A【解析】根据导数得出在的单调性,进而由单调性得出大小关系.【详解】因为,所以在上单调递增.因为,所以,而,所以.因为,且,所以.即.故选:A8、D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:9、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.10、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.11、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A12、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值14、(答案合理即可)【解析】当时满足,利用作差比较法即可证明.【详解】解:当时满足条件①②,证明如下:因为,所以;当时,;当时,;综上,.故答案为:(答案合理即可).15、【解析】利用正弦定理表示出,再求t,再利用求的最大值即可.【详解】在中,由正弦定理得,所以,,即求的最大值,也就是求t的最小值,而,即最大时,由椭圆的性质知当P为椭圆上顶点时最大,此时,,所以,所以的最大值是1,,所以,故答案为:.【点睛】本题考查椭圆焦点三角形的问题,考查正弦定理的应用.16、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设直径两端点分别为,,由中点公式求参数a、b,进而求半径,即可得圆C的方程;(2)利用弦心距、半径、弦长的几何关系求,再由圆心到直线l的距离求P到直线l的距离的最大值,即可得△PMN面积的最大值【小问1详解】设直径两端点分别为,,则,,所以,,则圆C半径,所以C的方程为【小问2详解】圆心C到直线l的距离,则,点P到直线l的距离的最大值为,所以,△PMN面积的最大值为18、(1)(2)过定点,定点为【解析】(1)根据离心率及顶点坐标求出即可得椭圆方程;(2)当直线斜率存在时,设直线的方程为(),求出的坐标,设是以为直径的圆上的点,利用向量垂直可得恒成立,可得定点,斜率不存在时验证即可.【小问1详解】由题意得,,,又因为,所以.所以椭圆C的方程为.【小问2详解】以为直径的圆过定点.理由如下:当直线斜率存在时,设直线的方程为().令,得,所以.由得,则或,所以.设是以为直径的圆上的任意一点,则,.由题意,,则以为直径的圆的方程为.即恒成立即解得故以为直径的圆恒过定点.当直线斜率不存在时,以为直径的圆也过点.综上,以为直径的圆恒过定点.19、(1)(2)【解析】(1)将已知点代入双曲线方程,然后可得;(2)由双曲线右焦点与抛物线的焦点相同可解.【小问1详解】因为双曲线过点,所以所以,得又因为,所以所以双曲线的渐近线方程【小问2详解】由(1)得所以所以双曲线的右焦点是所以抛物线的焦点是所以,所以所以抛物线的标准方程20、(1)证明见解析(2)【解析】(1)利用空间向量求出空间直线的向量积,即可证明两直线垂直.(2)利用空间向量求直线与平面所成空间角的正弦就是就出平面的法向量与直线的方向向量之间夹角的余弦即可.【小问1详解】如图,以为坐标原点,,,所在直线为,,轴,建立空间直角坐标系,则,,,,,因为,,所以,即;【小问2详解】设平面的法向量为因为,由,得,令,则所以平面的一个法向量为,又所以故直线与平面所成角的正弦值为21、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论