![2024届湖南省株洲市7校 高二上数学期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view/9480c2bd961542a4b7c660ce063a584e/9480c2bd961542a4b7c660ce063a584e1.gif)
![2024届湖南省株洲市7校 高二上数学期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view/9480c2bd961542a4b7c660ce063a584e/9480c2bd961542a4b7c660ce063a584e2.gif)
![2024届湖南省株洲市7校 高二上数学期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view/9480c2bd961542a4b7c660ce063a584e/9480c2bd961542a4b7c660ce063a584e3.gif)
![2024届湖南省株洲市7校 高二上数学期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view/9480c2bd961542a4b7c660ce063a584e/9480c2bd961542a4b7c660ce063a584e4.gif)
![2024届湖南省株洲市7校 高二上数学期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view/9480c2bd961542a4b7c660ce063a584e/9480c2bd961542a4b7c660ce063a584e5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省株洲市7校高二上数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.42.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数,,,,…构成的数列的第项,则的值为()A. B.C. D.3.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.4.已知数列中,,则()A. B.C. D.5.设函数,则曲线在点处的切线方程为()A. B.C. D.6.若函数在区间单调递增,则的取值范围是()A. B.C. D.7.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°8.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.9.双曲线的一条渐近线方程为,则双曲线的离心率为()A.2 B.5C. D.10.下列语句中是命题的是A.周期函数的和是周期函数吗? B.C. D.梯形是不是平面图形呢?11.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.12.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.12二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则_________14.由曲线围成的图形的面积为________15.设,是双曲线的两个焦点,P是双曲线上任意一点,过作平分线的垂线,垂足为M,则点M到直线的距离的最小值是___16.某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布,若,则成绩在140分以上的大约为______人三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当在处取得极值时,求函数的解析式;(2)当的极大值不小于时,求的取值范围18.(12分)函数,.(1)讨论函数的单调性;(2)若在上恒成立,求实数的取值范围.19.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.20.(12分)已知等差数列满足;正项等比数列满足,,(1)求数列,的通项公式;(2)数列满足,的前n项和为,求的最大值.21.(12分)已知数列{}的首项=2,(n≥2,),,.(1)证明:{+1}为等比数列;(2)设数列{}的前n项和,求证:.22.(10分)如图,在多面体ABCEF中,和均为等边三角形,D是AC的中点,(1)证明:(2)若平面平面ACE,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.2、B【解析】根据杨辉三角可得数列的递推公式,结合累加法可得数列的通项公式与.【详解】由已知可得数列的递推公式为,且,且,故,,,,,等式左右两边分别相加得,,故选:B.3、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D4、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.5、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A6、A【解析】函数在区间上单调递增,转化为导函数在该区间上大于等于0恒成立,进而求出结果.【详解】由题意得:在区间上恒成立,而,所以.故选:A7、D【解析】根据直线方程得到直线的斜率后可得直线的倾斜角.【详解】设直线的倾斜角为,则,因,故,故选D.【点睛】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.8、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C9、D【解析】根据渐近线方程求得关系,结合离心率的计算公式,即可求得结果.【详解】因为双曲线的一条渐近线方程为,则;又双曲线离心率.故选:D.10、B【解析】命题是能判断真假的语句,疑问句不是命题,易知为命题,故选B11、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.12、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】,,因此,.故答案为:.14、【解析】曲线围成的图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,在第一象限为弓形,其面积为,故.故答案为:.15、1【解析】构造全等三角形,结合双曲线定义,求得点的轨迹方程,再根据直线与圆的位置关系,即可求得点到直线距离的最小值.【详解】延长交的延长线于点,如下所示:因为平分,且,故△△,则,又,则,又在△中,分别为的中点,故可得;设点的坐标为,则,即点在圆心为,半径的圆上,圆心到直线的距离,故点到直线距离的最小值为.故答案为:.【点睛】本题考查双曲线的定义,以及直线与圆的位置关系,解决问题的关键在于通过几何关系求得点的轨迹方程,属中档题.16、150【解析】根据考试的成绩X服从正态分布.得到考试的成绩X的正太密度曲线关于对称,根据,得到,根据频率乘以样本容量得到这个分数段上的人数【详解】由题意,考试的成绩X服从正态分布考试的成绩X的正太密度曲线关于对称,,,,该市成绩在140分以上的人数为故答案为:150三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)对函数求导,根据求出m,并验证此时函数在x=1处取得极值,进而求得答案;(2)对函数求导,进而求出函数的单调区间和极大值,然后求出m的范围.【小问1详解】因为,所以.因为在处取得极值,所以,所以,此时,时,,单调递减,时,,单调递增,即在处取得极小值,故.【小问2详解】,令,解得.时,,单调递增,时,,单调递减,时,,单调递增.,即的取值范围是.18、(1)答案见解析;(2).【解析】(1)求出函数的定义域为,求得,分、、三种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)构造函数,由题意可知恒成立,对实数分和两种情况讨论,利用导数分析函数在区间上的单调性,验证是否成立,由此可得出实数的取值范围.【详解】(1)函数的定义域为,.(i)当时,,函数在上单调递增;(ii)当时,令得.若,则;若,则.①当时,,函数在上单调递增;②当时,,当时,,函数单调递增;当时,,函数单调递减;综上,可得,当时,函数在上单调递增;当时,函数在上单调递增,在上单调递减;(2)设,,则.当时,单调递增,则.所以,函数在上单调递增,且.当时,,于是,函数在上单调递增,恒成立,符合题意;当时,由于,,,所以,存在,使得.当时,,函数单调递减;当时,,函数单调递增.故,不符合题意,综上所述,实数的取值范围是.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数研究函数不等式恒成立问题,考查分类讨论思想的应用,属于难题.19、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.20、(1),(2)8【解析】(1)利用已知的关系把替换成,再把两式作差后整理即得通项公式,的通项公式可由已知条件建立基本量的方程求解.(2)由的通项公式可判断,,,当时,所有正项的和即为的最大项的值.小问1详解】,,两式相减得所以,又也满足,故;设等比数列的公比为,由得,即,因为,即,,(负值舍去),所以【小问2详解】由题意,,则,,,且当时,所以的最大值是.21、(1)证明见解析(2)证明见解析【解析】(1)利用已知条件证明为常数即可;(2)求出和通项公式,再求出通项公式,利用裂项相消法可求,判断的单调性即可求其范围.【小问1详解】∵=2,(n≥2,),∴当n≥2时,(常数),∴数列{+1}是公比为3的等比数列;【小问2详解】由(1)知,数列{+1}是以3为首项,以3为公比的等比数列,∴,∴,∴∵,∴∴,∴∴.当n≥2时,∴{}为递增数列,故的最小值为,∴.22、(1)证明见解析(2)【解析】(1)根据等腰三角形三线合一的性质得到、,即可得到平面,再根据,即可得证;(2)由面面垂直的性质得到平面,建立如图所示空间直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共部位装修施工合同范本
- 社区护理文书的标准化编写流程
- 生物医药技术对商业决策的影响分析
- 电力工程安全监管的培训体系建设
- 美妆行业合作协议书(2篇)
- 低压电线路改造施工合同范本
- 标准借款合同模板(民间借贷)正式版
- 购房合同保密协议
- 山东省青岛市即墨区2024-2025学年高二上学期11月期中考试生物试题(解析版)
- 电子与智能化工程项目团队的配置要点
- QES三体系内审检查表 含审核记录
- 信息论与编码 自学报告
- 口腔百问百答
- 二年级乘除法口诀专项练习1000题-推荐
- 贷款项目资金平衡表
- 高标准农田建设项目监理日志
- [整理]10kv开关站标准设计说明(最终版)
- 分级诊疗制度管理办法
- 义务教育语文课程标准2022年版
- 公务员入职登记表
- 九年级新目标英语单词表默写最新版
评论
0/150
提交评论