2024届广西桂林市十八中学高二数学第一学期期末学业质量监测试题含解析_第1页
2024届广西桂林市十八中学高二数学第一学期期末学业质量监测试题含解析_第2页
2024届广西桂林市十八中学高二数学第一学期期末学业质量监测试题含解析_第3页
2024届广西桂林市十八中学高二数学第一学期期末学业质量监测试题含解析_第4页
2024届广西桂林市十八中学高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西桂林市十八中学高二数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列1,,,的一个通项公式可以是()A. B.C. D.2.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.23.已知数列为递增等比数列,,则数列的前2019项和()A. B.C. D.4.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.45.在等比数列中,,是方程的两个实根,则()A.-1 B.1C.-3 D.36.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为17.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.8.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个9.下列命题是真命题的个数为()①不等式的解集为②不等式的解集为R③设,则④命题“若,则或”为真命题A1 B.2C.3 D.410.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.711.已知为等差数列,且,,则()A. B.C. D.12.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.以点为圆心,且与直线相切的圆的方程是____________14.双曲线离心率__________.15.将参加冬季越野跑的名选手编号为:,采用系统抽样方法抽取一个容量为的样本,把编号分为组后,第一组的到这个编号中随机抽得的号码为,这名选手穿着三种颜色的衣服,从到穿红色衣服,从到穿白色衣服,从到穿黄色衣服,则抽到穿白色衣服的选手人数为__________16.某人实施一项投资计划,从2021年起,每年1月1日,把上一年工资的10%投资某个项目.已知2020年他的工资是10万元,预计未来十年每年工资都会逐年增加1万元;若投资年收益是10%,一年结算一次,当年的投资收益自动转入下一年的投资本金,若2031年1月1日结束投资计划,则他可以一次性取出的所有投资以及收益应有__________万元.(参考数据:,,)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设关于x的不等式的解集为A,关于x的不等式的解集为B(1)求集合A,B;(2)若是的必要不充分条件,求实数m的取值范围18.(12分)某中医药研究所研制出一种新型抗过敏药物,服用后需要检验血液抗体是否为阳性,现有n(n∈N*)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:①逐份检验,需要检验n次;②混合检验,将其中k(k∈N*,2≤k≤n)份血液样本分别取样混合在一起检验,若结果为阴性,则这k份的血液全为阴性,因而这k份血液样本只需检验一次就够了,若检验结果为阳性,为了明确这k份血液究竟哪份为阳性,就需要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性的概率为p(0<p<1).(1)假设有5份血液样本,其中只有两份样本为阳性,若采取逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.(2)现取其中的k(k∈N*,2≤k≤n)份血液样本,采用逐份检验的方式,样本需要检验的次数记为ξ1;采用混合检验的方式,样本需要检验的总次数记为ξ2.(i)若k=4,且,试运用概率与统计的知识,求p的值;(ii)若,证明:.19.(12分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速(转/秒)1615129每小时生产有缺陷的零件数(件)10985通过观察散点图,发现与有线性相关关系:(1)求关于的回归直线方程;(2)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?(参考:回归直线方程为,其中,)20.(12分)如图,在直三棱柱ABC-A1B1C1中,底面ABC是等边三角形,D是AC的中点.(1)证明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.21.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长22.(10分)已知函数,且)的图象经过点和

.(1)求实数,的值;(2)若,求数列前项和

.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据各项的分子和分母特征进行求解判断即可.【详解】因为,所以该数列的一个通项公式可以是;对于选项B:,所以本选项不符合要求;对于选项C:,所以本选项不符合要求;对于选项D:,所以本选项不符合要求,故选:A2、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C3、C【解析】根据数列为递增的等比数列,,利用“”法求得,再代入等比数列的前n项和公式求解.【详解】因为数列为递增等比数列,所以,解得:,所以.故选:C【点睛】本题主要考查等比数列的基本运算,还考查了运算求解的能力,属于基础题.4、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.5、B【解析】由韦达定理可知,结合等比中项的性质可求出.【详解】解:在等比数列中,由题意知:,,所以,,所以且,即.故选:B.6、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.7、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.8、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.9、B【解析】举反例判断A,解一元二次不等式确定B,由导数的运算法则求导判断C,利用逆否命题判断D【详解】显然不是的解,A错;,B正确;,,C错;命题“若,则或”的逆否命题是:若且,则,是真命题,原命题也是真命题,D正确真命题个数2.故选:B10、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C11、B【解析】由已知条件求出等差数列的公差,从而可求出【详解】设等差数列的公差为,由,,得,解得,所以,故选:B12、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直线与圆相切,圆心到直线距离等于半径,由点到直线的距离公式求出半径,然后可得.【详解】圆心到直线的距离,又圆与直线相切,所以,所以圆的方程为.故答案为:14、【解析】由已知得到a,b,再利用及即可得到答案.【详解】由已知,可得,所以,所以.故答案为:15、【解析】,所以抽到穿白色衣服的选手号码为,共16、24【解析】根据条件求得每一年投入在最终结算时的总收入,利用错位相减法求得总收入.【详解】由题知,2021年的投入在结算时的收入为,2022年的投入在结算时的收入为,,2030年的投入在结算时的收入为,则结算时的总投资及收益为:①,则②,由①-②得,,则,故答案为:24三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)直接解不等式即可,(2)由题意可得,从而可得解不等式组可求得答案【小问1详解】由,得,故由,得,故【小问2详解】依题意得:,∴解得∴m的取值范围为18、(1);(2)(i);(ii)证明见解析.【解析】(1)设恰好经过3次检验就能把阳性样本全部检验出来为事件A,由古典概型概率计算公式可得答案;(2)(i)由已知,可能取值分别为1,,求解概率然后求期望推出关于的关系式;(ii)由,计算出,再由,构造函数,利用导数判断函数的最值可得答案..【详解】(1)设恰好经过3次检验就能把阳性样本全部检验出来为事件A,所以前2次检验中有一阳性有一阴性样本第三次为阳性样本,或者前3次均为阴性样本,则.(2)(i),所以,可能取值分别为1,,,,因为得,因为,所以,.(ii)因为,由(i)知,所以,设,,所以在单调递增,所以由于,所以,即,得证.【(4)(5)选做】19、(1);(2)控制在16转/秒内.【解析】(1)结合已知数据,代入公式中,先求出,然后求出,进而可求出,从而可得回归方程.(2)由题意得,即可求出转速的最高速度.【详解】解:(1)由题意知,,所以,则,即关于的回归直线方程为.(2)由可得,解得,所以机器的运转速度应控制在16转/秒内.20、(1)证明见解析(2)【解析】(1),连接,证明,再根据线面平行的判定定理即可得证;(2)说明平面,取的中点F,连接,以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:记,连接,由直棱柱的性质可知四边形是矩形,则E为的中点.因为D是的中点,所以,又平面平面,所以平面;【小问2详解】因为底面是等边三角形,D是的中点,所以,由直棱柱的性质可知平面平面,平面平面,面,所以平面,取的中点F,连接,则两两垂直,故以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,设,则,从而,设平面的法向量为,则,令x=2,得,同理平面的一个法向量为,则cosm由图可知二面角的平面角为锐角,所以二面角B1-AC-C1的余弦值为.21、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论