2024届广东省惠州市惠州中学高二数学第一学期期末质量检测试题含解析_第1页
2024届广东省惠州市惠州中学高二数学第一学期期末质量检测试题含解析_第2页
2024届广东省惠州市惠州中学高二数学第一学期期末质量检测试题含解析_第3页
2024届广东省惠州市惠州中学高二数学第一学期期末质量检测试题含解析_第4页
2024届广东省惠州市惠州中学高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省惠州市惠州中学高二数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.2.直线的倾斜角为()A.1 B.-1C. D.3.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=04.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20225.“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件6.等比数列的公比为,则“”是“对于任意正整数n,都有”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件7.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.8.如图,在三棱锥中,点E在上,满足,点F为的中点,记分别为,则()A. B.C. D.9.已知在直角坐标系xOy中,点Q(4,0),O为坐标原点,直线l:上存在点P满足.则实数m的取值范围是()A. B.C. D.10.已知下列四个命题,其中正确的是()A. B.C. D.11.已知函数,则曲线在点处的切线方程为()A. B.C. D.12.已知命题,则为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则_____________.14.若曲线在点处的切线斜率为,则___________.15.已知双曲线的左焦点为F,点P在双曲线右支上,若线段PF的中点在以原点O为圆心,为半径的圆上,且直线PF的斜率为,则该双曲线的离心率是______16.函数定义域为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角A,B,C的对边分别为a,b,c,且求A和B的大小;若M,N是边AB上的点,,求的面积的最小值18.(12分)已知抛物线,过点作直线(1)若直线的斜率存在,且与抛物线只有一个公共点,求直线的方程(2)若直线过抛物线的焦点,且交抛物线于两点,求弦长19.(12分)已知函数.(1)讨论函数的单调性;(2)若恒成立,求实数的取值范围.20.(12分)已知点,直线:,直线m过点N且与垂直,直线m交圆于两点A,B.(1)求直线m的方程;(2)求弦AB的长.21.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程22.(10分)如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C2、C【解析】根据直线斜率的定义即可求解.【详解】,斜率为1,则倾斜角为.故选:C.3、C【解析】两圆方程相减得出公共弦所在直线的方程.【详解】两圆方程相减得,即x﹣2y+6=0则公共弦所在直线的方程为x﹣2y+6=0故选:C4、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C5、A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.6、D【解析】结合等比数列的单调性,根据充分必要条件的定义判断【详解】若,,则,,充分性不成立;反过来,若,,则时,必要性不成立;因此“”是“对于任意正整数n,都有”的既不充分也不必要条件.故选:D7、C【解析】依题意,直线与直线互相垂直,,,故选8、B【解析】利用空间向量加减、数乘的几何意义,结合三棱锥用表示出即可.【详解】由题设,,,,.故选:B9、A【解析】根据给定直线设出点P的坐标,再借助列出关于的不等式,然后由不等式有解即可计算作答.【详解】因点P在直线l:上,则设,于是有,而,因此,,即,依题意,上述关于的一元二次不等式有实数解,从而有,解得,所以实数m的取值范围是.故选:A10、B【解析】根据基本初等函数的求导公式和求导法则即可求解判断.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B.11、A【解析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A12、C【解析】将全称命题否定为特称命题即可【详解】由题意,根据全称命题与特称命题的关系,可得命题,则,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题设可得,应用累加法有,结合已知即可求.【详解】由题设,,所以,又,所以.故答案为:.14、【解析】由导数的几何意义求解即可【详解】,,解得.故答案为:115、3【解析】如图利用条件可得,,然后利用双曲线的定义可得,即求.【详解】如图设双曲线的右焦点为,线段PF的中点为M,连接,则,又直线PF的斜率为,∴在直角三角形中,,∴,∴,即,∴.故答案:3.16、【解析】根据函数定义域的求法,即可求解.【详解】解:,解得,故函数的定义域为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】利用正余弦定理化简即求解A和B的大小利用正弦定理把CN、CM表示出来,结合三角函数的性质,即可求解的面积的最小值【详解】解:,由正弦定理得:,,,可得,即;,由由余弦定理可得:,,如图所示:设,,在中由正弦定理,得,由可知,,所以:,同理,由于,故,此时故的面积的最小值为【点睛】本题考查了正余弦定理的应用,三角函数的有界限求解最值范围,考查了推理能力与计算能力,属于中档题18、(1)或;(2)8【解析】(1)根据题意设直线的方程为,联立,消去得,因为只有一个公共点,则求解.(2)抛物线的焦点为,设直线的方程为,联立,消去得,再根据过抛物线焦点的弦长公式求解.【详解】(1)设直线的方程为,联立,消去得,则,解得或,∴直线的方程为:或(2)抛物线的焦点为,则直线的方程为,设,联立,消去得,∴,∴【点睛】本题主要考查直线与抛物线的位置关系,还考查了运算求解的能力,属于中档题.19、(1)当时,上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)【解析】(1)先求函数的定义域,再求导,根据导数即可求出函数的单调区间;(2)根据(1)的结论,分别求时的最小值,令,即可求出实数的取值范围.【小问1详解】易知函数的定义域为,,当时,,所以在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增.【小问2详解】当时,成立,所以符合题意;当时,在上单调递减,在上单调递增,要使恒成立,则,解得;当时,在上单调递减,在上单调递增,要使恒成立,则,解得.综上所述,实数的取值范围是.20、(1)(2)【解析】(1)求出斜率,用点斜式求直线方程;(2)利用垂径定理求弦长.【小问1详解】因为直线:,所以直线的斜率为.因为直线m过点N且与垂直,所以直线的斜率为,又过点,所以直线:,即【小问2详解】直线与圆相交,则圆心到直线的距离为:,圆的半径为,所以弦长21、(1)(2)或【解析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或22、(1)证明见解析(2)【解析】(1)设正方体的棱长为,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出,即可证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论